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Abstract

Fringe-balanced binary search trees are obtained by performing rotations only on subtrees of
size three. The parameter “number of rotations” has recently been studied by Mahmoud [3],
using a Pdlya urn model. This talk, based on [5] proposes a top-down approach of the
problem,; that leads to a differential equation. The solution is related to the Weierstrass’
p-function. This fact allows to derive the asymptotic normality of the parameter by means
of Hwang’s quasi-power theorem [2]. An alternative way of obtaining the exact expectation
and variance, which relies on operator calculus, is also presented.

It is well-known that in a random binary search tree constructed by insertion at the leaves, the
average depth of a node is logarithmic in the size of the tree, so that retrieval of the data stored
in the nodes can be done efficiently. One simple way to improve the speed of retrieval even more
is to compress the subtrees near the leaves by doing a fringe-balanced rotation: whenever a son is
appended to a node that itself is a single son (its “brother” is an external node), a rotation of the
three nodes is performed to place the median of the three elements as the root of the subtree and
the other two elements as sons. Therefore all subtrees of size 3 in the tree are complete.

The distribution of the number of rotations that are made when constructing such a fringe-
balanced binary tree under the random permutation model was recently analyzed by Mahmoud [3],
using a Pélya urn model, and a central limit theorem for urn models by Smythe [6]. Here is presented
an alternative way, based on analytic methods, of proving the Gaussian limiting distribution. This
presentation follows [5].

1. Top-Down Approach

The recursive top-down analysis (see [4] for various uses of this approach) begins with a recurrence
relation based on splitting probabililies. When constructing a fringe-balanced tree from a random
permutation, the first three elements of the permutation determine the root of the final tree, as
well as whether or not there is a rotation at the root (a rotation occurs in four cases out of six).

Hence the splitting probability m, j, which is the probability that in a tree of size n the root is
the node k, is given by

(k—1)(n—k)
Tpk = ——Zpv
(3)
form>3and 1 <k <n,m; =m2=1/2and m;; = 1. And we also get a recurrence relation for
the probability F7, ,,, that the number of rotations is m, when generating a fringe balanced tree of

size n, starting with an empty tree (the number of rotations to construct the root of the tree is 1
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with probability 2/3, and 0 with probability 1/3). Thus for n > 3 and 1 < m < n:

(1) Fom =3 Zﬂ'nkZFk L km-t + 5 Zﬂ'nkZFk 1 pm—1-1

with initial values Fpo = 17 Fl,o =1, F,0=1and me =0 0therw1se.

Introducing the probability generating function F(z,v) = ) im0 Fnmz"0™ this recurrence
leads to the differential equation %%F(Z,v) = (3 +20) (ZF(z, v))Q, with initial conditions
F(0,0) =1, ZF(z, v)‘ o= land %F(z,v)‘ = 2.

Substituting G(z,v) = £ F(z,v) this differential equation can be rewritten as

(2) -(?; G(z,v) = (24 4v)G(z, '0)2

with G(0,v) =1 and %G(z,v)‘zzo =2.

1.1. Moments. The moments of the distribution are obtained by differentiating equation (2) with
respect to v, and evaluating at v = 1. Let

92
Zm\/l and My(z) = -—G(z,v)

d
Mi(z2) = —G(z,v) - % 507

ov

ZTLMZ) n— 1

v=1 n>0

where Mﬁf) and 1\/17(3) denote the first and second factorial moments of the number of rotations.

M;(z) and My(z) both satisfy an Euler differential equation. Extracting the coefficients of the
(1)

solutions M7(z) and M;(z) leads to exact values for the expectation M, = My’ and the variance

Var, = M2 + MV - (M,E ))2:

Theorem 1. The expectation and the variance of the number of rotations when generating a fringe
balanced binary search tree of size n are given by

2 8 66 680
M, =2n—> (n>6), =02 > 19),
"y (n26) Vary, = gozn = 53 (0 212)

1.2. Limiting Distribution. Equation (2) transforms into

4 , 2
S0+ 206G+ 51— 0) = (5260
from which we get the implicitly given solution of G(z,v):
G(z,v)

2= / dx/\/§(1+zv)x3+§(1—v).

This form shows a close relation between G(z,v) and the Weierstrass’ p-function, which can be
characterized, within a simply connected domain of C.,, which contains no zeros of the denominator,

by the integral ( = [ da/+/42® — gox — g3. Constants g, and g3 are called the invariants of .
2(C)
Indeed, making the substitution

1—|—21) 14+ 2v
1=y / 4 8 = /(= = s(0),
\/5 1+ 2v)23 + 5(1 - o)
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it is shown in [5] that W (t,v) = G(2(1),v) is a Welerstrass’ p-function with invariants g, = 0 and
g3 = —8(1 —v)/(1+ 2v).

Since p((¢) has a double pole at { = 0, it follows that G(z,v) has a double pole at z = s(v),
where it admits the local expansion G(z,v) = l_fﬁ (2 — 5(v) 2+ O (2 — s(v))".

Integrating term by term, we obtain the expansion of F(z,v):

1 ;
) (1 - ﬁ) + O(z—s(v)).

Singularity analysis leads immediately to the expansion of the coeflicients:
" 1 o 1
(3) [z"]F(z,v) = %S(W) + (1 +0 (F))

Performing a series expansion of the integrand, the integral s(v) can be expressed in terms of a
hypergeometric function:

F(z,v) =

14+ 2v

3 S(’U) = 2F1 (

In (3), the probability generating function of the number of rotations is given in a form that satisfies
the hypothesis of Hwang’s quasi-power theorem [2], so that we finally get the central limit theorem:

Theorem 2. The distribution X,, of the number of rotations, when generating a fringe balanced
binary search tree is asymptotically Gaussian:

Xn—%n

/ 66
837t

2. Urn Model and Operator Calculus

Pr <a :cp(x)+0(i).

NG

Insertions in fringe-balanced binary search trees can be translated into an urn model of Pdlya.
The urn contains balls of three different colors, corresponding to the leaves of the tree: binary
subtrees of size 3 (which are always complete) have four leaves of color 1; in subtrees of size 2,
the two deepest leaves are colored by 3, and the third one is colored by 2. We start with an urn
containing two balls of color 1, corresponding to a starting tree with one internal node. Inserting
at a leaf of color 1, i.e. picking a ball of color 1, results in replacing two leaves of color 1 by one
leaf of color 2 and two leaves of color 3. Inserting at a leaf of color 2 results in replacing this leaf
and its two associated leaves of color 3 by four leaves of color 1. In the same manner, inserting at
a leaf of color 3 results in replacing two leaves of color 3 and one leaf of color 2 by four leaves of
color 1. Thus the process of insertion translates into the ball addition matrix A, whose (%, j) entry
is the number of balls of type 7 to be added when a ball of color ¢ is picked:

-2 1 2
A=14 -1 -2
4 -1 =2

Working on the addition matrix, Mahmoud [3] obtains the exact averages and covariances for the
number of balls in the urn after n picks, as well as the exact average and variance of the number
of rotations after » random insertions in an empty fringe balanced tree.

These results can also be obtained by operator calculus [1]. Define the random variables Xék)
to denote the number of balls of color k£ in the urn, when n 4 1 elements are in the urn altogether
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(after n — 1 random picks). Only the values ]E{X } and V{X } must be calculated, since all
other values follow by the relations XT(L ) = QXT(L ) and XT(L ) + )&7(z ) + )&7(z ) = n + 1. We denote
by pn,k the probability ]P’{Xff) =k} and by P,(u) the generating function 3, pnru®. The urn
picking process leads to the recursion

3k 3
Z oy B k1| _ Z 9 k

E>0 E>0

where D denotes the differential operator %. If evaluation at w = 1 is denoted by operator U, we
get then for n > 6:

E{X®)\} = UDPyi(u) = (U + (1 - %) UD) Po(u)=1+ —E{X )}

with E{X } = 1. This linear recursion is easily solved and we get E{X N=1lnt 1) for n > 6.

7
A similar computation holds for the second factorial moment E{X _|_)1 (XT(j_)1 -1)
from which the variance is obtained.

The average and variance of the number of rotations can also be treated in this way. Let the
random variable R,, denote the number of rotations made when constructing a fringe balanced tree
with n elements (or, in the urn model, the number of picks of elements with color 3 after n — 1
random picks). Introduce the bivariate generating functions R, (u,v) = Ek7lpn7k7lukvl, where p,, 1.
denotes the probability, that after n» — 1 random picks & balls in the urn are of color 2 and / times
a ball of color 3 was chosen. Following the picking process, the recursion for R, is

2k 3k
wF1o! k-1 1+1 k+1, .1
n+1 E pn“( v—l——n 1u v —I—(l——n 1)u v).

Denoting by D, and D, the differential operator w.r.t. w resp. v and by U, and U, the evaluations
at u =1 resp. v = 1, we get for the expectation E{R,,1(u,v)} = U, U, Dy Rpi1(u,v)

+1

The average value of R, is obtained by solving this recursion, and similar computations lead to the
variance.

E{R,1(u,v)} = (—U U,Dy + U,U,D ) Ry (u,v) = E{R,(u,v)} + RLHE{X;%}.
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