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Abstract

Many combinatorial identities can be formulated in terms of ¢g-hypergeometric sums, for in-
stance, the celebrated Rogers-Ramanujan identities from additive number theory. Identities
of this type can be constructed iteratively from simpler ones, i.e., by proceeding along Bailey
chains. Another construction mechanism, different from this classical one, arises within the
context of ¢-WZ-theory. For instance, as a by-product of computer proofs, one automat-
ically obtains the so-called “dual” identities. The talk gives a short tutorial introduction
and discusses various relations between these concepts.

The talk consists of four parts. The first part is an introduction to Gaussian polynomials. The
second part is a brief account of g-hypergeometric WZ theory. The parts that follow are variations

on this theme.

1. Gaussian polynomials

Let p(m, n; k) denote the number of partitions of k in at most m parts, each part < n. Clearly,

p(m,n;k)=10, if k> mn,

p(m,n;mn) = 1.

Therefore the generating function G, .(q) = >.7% p(m, n; k)q* is a polynomial in ¢ of degree mn.

A few particular instances are:

1— qm+1
Go(@) =1, Gon@) =1 Gman(@) = Grnl@)s  Gmale) =

Gan(q) =14 q+2¢* +3¢° + 4¢" +4¢° + 5¢° + 4¢" + 4¢° + 3¢° + 2¢'° + ¢** + ¢*2.

bl

From the decomposition

p(m,n;k) = p(m — 1,05k —n) +p(m,n - 1;k)  (k>n)

follows that

Gm,n(q) = qnGm—l,n((Z) + Gm,n—l(q)'

By symmetry, we also have:

Gm,n(q) = Gm—l,n(q) + qum,n—l(Q)'

So, by elimination between (1) and (2):

1— m+n 1— m4ny . .. 1— m+1

Gomn(q) = Grm,0(q)-
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Using the standard notation (a;¢)r = (1 — a)(1 —aq)---(1 - ag®™1), k =1,2,... and (a;q); =
1/(a; q)—g for k < 0, we get a closed form representation of the Gaussian polynomials G, ,;:
(3) :| -G (q): (1_qm—|—n)‘__(1_qm-|—1) — (q;Q)m-Fn ‘
’ (I-¢")--(1-9q) (% Om (43 Dn

m-+n
n

2. Some facts about ¢-hypergeometric WZ theory

Definition 1. A sequence ({) is hypergeometric if the ratio of two consecutive terms is a rational
function of the summation index k: tx41/tx = P(k)/Q(k), where P and @ are polynomials in k.

Definition 2. A sequence (1) is ¢-hypergeometric if the ratio of two consecutive terms is a rational
function of ¢*: txy1/tx = P(¢*)/Q(¢"), where P and @ are polynomials in ¢*. (Note that ¢ should
be contained in the coefficient field which should be of characteristic 0.)

2.1. From Gosper to Zeilberger. Gosper’s algorithm for indefinite hypergeometric summa-
tion [3] is given as input a hypergeometric sequence (fz). This algorithm finds a hypergeometric
sequence (gx) such that fi = gr+1 — gr (then g is the product of f; and a rational function in k).
From there by telescoping one gets:

k13
Z fk = Gn+1 — Yo-
k=0
Zeilberger’s algorithm computes definite hypergeometric sums. Given a proper hypergeometric
sequence (£}, ;) (with finite support in k), this algorithm finds a hypergeometric sequence (5%) such

that
> Fup =5
k

The idea is to use an extension of Gosper’s algorithm in order to find polynomials a;(n) and a
proper hypergeometric term (G, ) such that

aj(n)Fryjr = Guip1 — Guk-

J
J=0
Then G, i is necessarily of the form R(n,k)F, ; where R is a rational function called the “certifi-
cate”. Summing this equality yields the desired recurrence on .5,,:

J

E a;(n)Spt; = 0.

J=0
This algorithm has been implemented in Mathematica by P. Paule and M. Schorn:

FErample. In[1]:= <<zb_alg.m

Fast Zeilberger by Peter Paule and Markus Schorn. (V 2.2)
Systembreaker = ENullspace

In[2]:= Zb[Binomiall[n,k] x"k, k, n, 1]

Out[2]= {(1 + x) F[k, n] - F[k, 1 + n] == Deltalk, R F[k, nll}
In[3]:= Show[R]
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Both these algorithms extend to the g-case, a corresponding implementation in Mathematica is
due to A. Riese.

2.2. Example. A variation of a g-analogue of Gosper’s and Zeilberger’s algorithms can serve in
finding g¢-analogues of binomial identities. For instance, in order to derive a g-analogue of the
binomial theorem, the question is to find a,3 € Z such that the following sequence satisfies a

recurrence of order one:
n

— Tl Lk ga(5)+8k
k=0
Riese’s Mathematica package qZeil automatically determines the candidates a € {1}, § € Z.
Indeed, choosing @ = 1 and g = 0:

In[3]:= <<qZeil.n
Out [3]= Axel Riese’s q-Zeilberger implementation version 1.8 loaded

In[4]:= qZeil[ gBinomial[n,k,q] x"k q"Binomial[k,2], {k,0,n}, n, 1]
-1+ n
Out [4]= SUM[n] == -((-1 - q x) SUM[-1 + n])

So, we obtain the g-binomial theorem in one of its standard forms:

n

> [k] t*qG) = (L4 2)(1+qz) (14 ¢" o).

k=0

2.3. WZ duality. Given a hypergeometric sequence (f, ), assume that Zeilberger’s algorithm
finds a1, a3 and g, such that:

ar(n) fat1,e + @2(n) frok = Gnk+1 — Gn k-
Then, in case of finite support:

a1(n)Spt1 + az(n)S, = 0.

By using this in the form ay(n)/Sn4+1 = —a1(n)/S,, we rewrite the relation above as:
al(n) fn+1,k n ag(n) fn,k _ 9In,k+1 — Gn,k
Sn Snt1 Snt1 Sn Snt15n
Defining F, x = fnx/Sn, and Gy = gnk/(a1(n)Sy41), we arrive at:
(4) Foyip — Fok = Gnip1 — G

This gives rise to the following definition:
Definition 3. A pair of sequences (F, ) that satisfy (4) is called a “WZ pair”.

Note that given such a WZ-pair (F having finite support), from (4) follows that >, F41 % —
> & Fnr = 0, which means that the corresponding sum sequence S, := >, F(n,k) is a constant.
3. A Fibonacci g-analogue

The well-known Fibonacci numbers are defined by Fo =1, F; =1 and F,19 = Fyy1 + F,. Does
there exist a g-analogue of these numbers? In order to follow the strategy explained above (example
2.2), we take as a starting point the following well-known hypergeometric sum:

k=0
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For the («, 5)-Ansatz, we take:

n
Fu(q) = [n & k] g ok,
k=0
and we want to determine a, § € Z such that (F,,(¢)) satisfies a linear recurrence of order 2. Riese’s
implementation delivers as candidates: a € {1,2,3} and § € Z, but only the choice a = 2 is
successful. This means, only for a = 2, the ¢g-analogue of Zeilberger’s algorithm delivers (V3 € Z)
a recurrence of order 2, namely:

(5) Frsa(9) = Fapa () + ¢ Fo(g).

Let us fix (for instance) § = 1, and we obtain for this choice:
F ( ) _ zn: n—k k2

In the limit n — oo:

[oe] k2 (o) 1

(6) Foo(Q): Z(qq—q) = 1‘*‘25#} kl_[l (1_q5n—|—1)(1_q5n+4)7

where b,, is the number of partitions of n into parts with minimal difference two and the right-hand
side is one of the celebrated Rogers-Ramanujan identities [1].

Starting from (5), it is also possible to conjecture and then prove (by g¢-Zeilberger) the following
identity due to I. Schur

(10k41) n (2k—1)(5k—2) 2n
Fanlg) = ) 4" [n—5k] Eq [n—5k—|—2]'

k

4. The Bailey chain approach

Proposition 1.

n

¢ (4 D@3 Dtk

= 1.
= (4 Dn—j (40)j k(0 @) 4k

(7) .

Proof. Denote by f, ; the summand. Riese’s implementation yields:

k+n( .7
_ ¢ —q")
fn,j - fn—l,j - gn,] - gn,j—lv Where gn,] - (qn _ qk)(l qk+n)fn’]

This (¢)WZ-pair implies that the sum over f, ; is constant. That this constant is 1 follows from
instance from the evaluation for n = k [1, 4]. O

This identity is a special case of a g-hypergeometric formula that can be proved combinatorially as
explained in [4].

Multiplying (7) by an arbitrary sequence (ci), we obtain the following special case of “Bailey’s
Lemma”:

-2 —k2

Ck _ ¢’ Ckq
® zk: (¢:9) ; =2 (43 9)n—; zk: (4:9);

b€ Otk 55 (600 i—k(4@)j+h
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Definition 4. Two sequences ((a)kez, (b)nen) are called a Bailey-pair when

:;q

k
Now, let’s walk in a “Bailey-chain” (using proposition 1) starting with: a; = q(2)(—1)k and b,
as above. Using qZeil, we get:

' q n k (Lq)n-}—k.

(g)xk —Z5q)n(—q/7;q)n
bn:Z( q _ (=%9)n(=q/%5q)

GOk Ontre (¢;9)2n

Note that in the limit n — oo, this turns into Jacobi’s triple product identity:
o ,
J

Z q(’;)xk = H (1—¢H)(1+ ¢ 1z)(1+ q;)

k 7=1
From there (6) follows when substituting ¢ by ¢° and z by —¢?.
Now, with ¢ = qu ar and z = —1, (8) yields an identity due to Rogers:

(1% 3k 1
e -

GOt G Onre (500

which can be found by the ¢-Zeilberger algorithm after “creative symmetrizing” (i.e., multiplying
the summand by 14 ¢* in this example).
The second step in the Bailey chain approach uses ¢ = q%2 ay. This gives:

(—1)kgzF -3k ¢’
zk: (43 D@ Dt ; (43 )n—4(g:9);’

In the limit n — oo and by Jacobi’s triple product identity, this gives again (6). The third step of
the Bailey chain gives:

(- 1)kqgk2 1k ~ e j
zk: (q7 q)n—k(qv q)n-}—k B Z lz:

2

j>0(qqng quvq)
resulting when n — oo in an identity due to B. Gordon
1 (o) o0 q(j+l)2+l2
H(l B q7n+3)(1 B q7n+4)(1 B q7n-|—7) Z

(4 Do 2 (5 9)ila: )’

l,7=0

whose first automatic proof was given by Chyzak [2].
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