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Abstract

The smallest size of components in random decomposable combinatorial structures is studied
in a general framework. The results apply to several combinatorial structures in both
the labelled and the unlabelled case. Typical examples are the cycle decomposition of
permutations and the factorization of polynomials over finite fields into irreducible factors.

1. Introduction

Many types of combinatorial objects decompose as sets of simpler basic objects diversely known
as “prime”, “irreducible”, or “connected” components. For instance, a permutation decomposes as
a set of cyclic permutations, a polynomial as a (multi)set of irreducible factors, and a graph as a
set of connected components. Such situations are combinatorial analogues of the fact that natural
numbers uniquely decompose as products of primes.

Let 7 be a class of basic objects, F the class of all sets of objects from Z, that is

F =Set(I).

As usual, this schema covers both the labelled case (L) where sets are built upon labelled products,
and the unlabelled case (U) where multisets are intended. Enumeration is treated by generating
functions [5]. The generating functions (gf’s) F(z),1(z) corresponding to F,Z, are taken to be
either the exponential generating function (egf) in the labelled case or the ordinary generating
function in the unlabelled case,

(L) Fz) =Y Fni—T 1()=%) In%
(U): F(z) =) Fp2" I(z) = I.z",

with F,, I, the number of objects of size n in F,Z. Then, the fundamental relations between
generating functions are given by the exponential formulz:

(L): F(z)=¢)

1 i 1 1
1) (U): F(z2)= H(l — 2" = exp (I(z) + 51(22) + §1(23) 1. ) .
k=1
The construction covers a number of classical combinatorial structures like permutations (cyclic,

general), monic polynomials over a finite field of cardinality ¢ (irreducible, general), functional
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graphs (connected, general) in either the labelled or the unlabelled case. In fact, the examples just
cited all belong to an interesting class called the “exp-log” class that was introduced in [4].

Definition 1. A pair (Z,F) is said to have the exp-log property if /(z) has a unique dominant
singularity p of the logarithmic type,

2 1(z) ~ al
@) (3) 1, alog 1=

+eo+ O((1 = 2/p)%),

for some € > 0, where « is called the multiplier. Accordingly, one has
(3) F(z) ~ el ~e(1 = 2)70, ¢ = €.

It is understood that these expansions should hold in an indented disk of the type required by
singularity analysis.

Based on the known facts for integers [12] and on specific combinatorial examples, the following
properties are expected to hold true:

1. Prime Number Theorem: The asymplotic densily of irreducible objects satisfies

n(l

2. Gaussian law: The number of irreducible components in a random F-object of size n is
asymptotically Gaussian with mean and variance each asymptotic to alogn.

3. Dickman’s law: The density of F-object of size n whose largest T-component is of size
m = n/u involves a function of which a prototype is the Dickman function p(u) classically
defined by the difference-differential equation

plu)=1(0<u<1), up'(u) + p(u—1)=0 (u>1).

4. Buchstab’s law: The density of F-object of size n whose smallest Z-component is of size
m = n/u involves a function of which a prototype is the Buchstab function w(u) classically
defined by the difference-differential equation

uw(u) =1 (1< u<2), (uw(u)) = w(u—1) (u> 2).

The Prime Number Theorem for exp-log classes derives immediately from basic singularity analysis
theorems. The Gaussian law was established in [4] by means of characteristic functions, thanks to
the uniformity afforded by singularity analysis; it is an analogue of the classical Erdos-Kac theorem
for the number of prime divisors of integers. The Dickman law is known originally from number
theory [12] and it holds as well for the cycle decomposition of permutations [10], its extension to
the general framework of exp-log classes being due to Gourdon [7]. The purpose of the talk is
precisely to establish for exp-log structures the Buchstab law of smallest components by building
upon Gourdon’s analysis of largest components.

2. Cycles in Permutations

In its simplest terms the problems are well exemplified by the analysis of smallest and largest
cycles in permutations. In an important paper, Shepp and Lloyd [10] established the Dickman
law and the Buchstab law for permutations. Their approach is however based on an asymptotic-
probapbilistic model of permutations as sums of Poisson random variables of rates 1, %, %, ... relayed
by nonconstructive Tauberian arguments. Gourdon [7] was instead able to push the analytic ap-
proach to its ultimate limits, thereby solving the long-standing Golomb-Knuth conjecture; see [6].
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From standard methods of enumerative combinatorics the egf’s of permutations with all their
cycles of size at most m (PIS™](2)) or at least m + 1 (P>"(2)) are given by

2 m
p[Sm](z) = exp (i + L 4ot Z_)
4 1 2 m
( ) 1 Zm—|—1 Zm—l—?
= exp | — — — ...
1-=z2 ( m+1 m+2 )
m+1 m+2
pmliy = z z
(5) ) eXp(m+1+m+2+
1 ( z 22 zm)
_— eXp —_—— — — — s e — — .
1-=z2 1 2 m

Let L, and 5, be the random variables that represent the largest cycle and the smallest cycle in a
random permutation of size n. Equations (4) and (5) give access to probabilities, as

Pr{L, < m} = [2"]PI=7(z),  Pr{S, > m} = [z"]PP"(2).

In the analytic perspective, an important role is thus played by the decomposition of the loga-
rithm into its partial sum and remainder,

log —— = $u(2) + () (2) §m:2k (2) §:Zk
= 1 S = — 1 = —.
Ogl—z Sm 2 Tm Z, m\Z 2 k" Tm\ 2 = k

Consider now smallest cycles. For any fized m, singularity analysis at z = 1 immediately implies
a formula for generalized derangements,

(®) P = [Pz = et of1),

where H,, = 1+ % + . 4 % is the harmonic number and the error term is exponentially small.
There is no claim to uniformity, but this argument suggests for m tending to oo (at least sufficiently
slowly) the approximate formula

Bl ¢
(7) P~ —
Let S, be length of the smallest cycle in a random permutation of size n. The estimate above
suggests that the expectation of 5, satisfies

E[S,)= Y PP = e logn(1 + o(1)),
m>1

where the asymptotic estimate matches what is otherwise known about the distribution of 5.
However, an approximation of the form (7) cannot hold all the way up to m = n — 1 since

1

8 p>-1] = =

(®) |

corresponding to cyclic permutations. A natural way to reconcile (7) and (8) is to look for a version
that is of the form

(9) ploml A, w(n/m)

n m 2

where one should have w(1) = 1 and w(400) = e77. It turns out that an amended form of (9) does
hold true with w(u) in (9) being precisely the Buchstab function.
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3. The exp-log Class

The main theorem of the talk deals with the general exp-log case. We state it here in the case
of a multiplier ¢« = 1 where the standard Buchstab function appears. Also, we develop the main
ideas in the representative case of the cycle structure of permutations.

Theorem 1. For a random element of size n in an exp-log class F of multiplier a = 1, the
probability that the smallest component S, is of size greater than m salisfies

1 logn
(et )
m nm

Pr{S, > m} = %w (%) +0

uniformly over the range {0,...,,n — 1}.

The proof starts from Cauchy’s coefficient formula

1 dz
ol _ -
(10) P /CP () oy

 2m

With the purpose of “capturing the singularity”, the integration contour is taken to be a circle of
radius close to 1, namely e~ /™. Set

z= e_t/”,
where ¢ ranges from 1 — niw to 1+ nir. Then 27" normalizes to an exponential ¢’. The form (5) of

the gf P>"1(2) involves r,,(2) that is none other than a Riemann sum relative to the exponential
integral,

Thus, everything rests on a uniform approximation of the Riemann sum r,,(2) by the exponential
integral. This is provided by the following key lemma of [6].

Lemma 1 (Gourdon). One has uniformly for ®(h) > 0 and |3(h)| < T,

m

r(e~) = E(mh) + O (e_mh) .

(The proof of the lemma is based on the integral formula

[t 1
'rm(e_h) = — e ’—ds,
m Jon 1—es/m

and the decomposition

1 B 1 1 N 1
l—e? \l—e2* =z z’
where the first term is analytic near z = 0.)
Using Lemma 1, one can justify replacing the remainder logarithm in the expression of

[")(PE™(z) - 1)
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by an exponential integral. In this way, one establishes rigourously the chain of approximations

1+inm in
plm = 1 / () 1)etdy
1

20T J1 i
1 14200
(11) ~ g [ -t
TN J1—jco
1 14200
~ (eP®) —1)et/1d,

2mm J1 00

where g = m/n. (This is easier said than done!)

Now, the form (11) is an inverse Laplace integral evaluated at 1/p. It can be matched against the
Laplace transform of w(u), itself directly derived from the defining difference-differential equation.
Thus eventually, the Buchstab law arises from Cauchy’s coefficient integral upon using a contour
close to the singularity z = 1 with a “renormalization” that leads to the appearance of a Laplace
transform—the transform of Buchstab’s function.

The technique adapts gracefully to all exp-log structures with multiplier ¢ = 1 since these behave
analytically very nearly like permutations. For other multipliers @ # 1, a function w,(u) closely
related to the Buchstab function must be introduced (work in progress). Finally, like in Gourdon’s
treatment of largest components, other problems can be dealt with including: (7) local and central
limit laws; (7¢) distribution estimates for the rth largest component for small fixed r.

4. Applications

The analysis sketched here follows closely a preprint by Panario and Richmond [9] and the
related works on largest components [6, 7]. It applies to all exp-log classes. In particular, it special-
izes to polynomials over finite fields and hence has consequences on the analysis of corresponding
algorithms. We may cite here:

1. The comparative analysis of several halting rules for the Distinct Degree Factorization phase
of univariate polynomial factorization in [3], which requires knowledge of the degrees of the
two largest irreducible factors.

2. The analysis of the trial-and-error construction of irreducible polynomials by Ben-Or’s al-
gorithms [9], where only partial factorisations are attempted and a candidate polynomial is
discarded as soon as its factor of smallest degree has been found.

More generally, the analogy between the prime decomposition of integers and exp-log structures is
a striking fact that constitutes a valuable addition to the abstract theory of combinatorial schemas
initiated by Soria [11]. (Other general approaches have been recently developed by a variety of
authors in a stochastic perspective; see [1, 2, 8].)
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