ECPP Comes Back

François Morain
LIX, École Polytechnique
April 20, 1997

[summary by Guillaume Hanrot]

1. Introduction

Prime numbers have always attracted attention from both mathematicians and computer scientists. One of the reasons is perhaps the fact that the definition of a prime is very simple, most of the famous conjectures concerning primes can be stated in elementary terms, yet these problems are extremely high and the techniques involved are most often very sophisticated.

We outline a few more concrete motivations to study prime numbers and to try to discover huge prime numbers (that is, apart from trying to understand the asymptotic properties of primes via experimentation):

− prime numbers are the elementary particles of the arithmetician; we just do as physicists do!
− primality testing/proving can be used as a benchmark for complexity studies (does there exist any polynomial-time algorithm for factoring?), devising and programming efficient algorithms;
− prime numbers are heavily used in modern, number-theory based cryptography (RSA, discrete logarithms, etc.). Thus it is an important matter to be able to produce large primes at will, and to be able to prove them prime.

The main trends in the computational study of primality are the following:

− Let \(N \) be a large integer. Can one tell if \(N \) is prime?
− Find large Mersenne numbers, i.e., primes of the form \(2^p - 1 \);
− construct large “general” primes.

In this talk we will describe the solutions to the first problem, the so-called “primality testing” problem, but we shall call it “primality proving”, to emphasize the fact that we shall describe an algorithm with produces an easy-to-check proof together with its yes/no answer.

We shall first make a quick overview of existing primality tests; we will then concentrate on the ECPP test, describing its principles, its main features and recent progresses in theory and implementation. We shall end by a list of current records and perspectives.

2. Primality Tests: an Overview

A general reference for all the tests mentioned in this section is [9].

2.1. Compositeness Tests. This section covers the so-called “compositeness tests”. Given a number \(N \), these tests check whether \(N \) verifies a certain criterion, which is known to be the case if \(N \) is prime. If it is not so, the number is known to be composite, whence the name of this group of tests. However, if the test is passed, one can by no means be sure that \(N \) is prime.
In a nutshell, they are fast ($O((\log N)^3)$), but can only provide one with negative answers to the question “is N prime”. Examples of such tests include:

- Fermat tests and extensions, where the criterion is $2^{N-1} \equiv 1 \pmod{N}$;
- Field extensions tests: cyclotomic fields (Lucas), general fields (Arno [3], Gurak [13]);
- Elliptic curves tests (Bosma [6], Gordon [11]);
- Polynomial tests (Grantham [12]);
- Combination of several of those last tests (PRIKIN).

Due to their efficiency, and their relative accuracy concerning “small” numbers N when suitably combined, those tests are usually implemented under the name `isprime` in various computer algebra packages (Maple, Pari, ...).

2.2. Primality Proving. A real primality proof is somewhat different from the tests described in the last section. It should be able to give an answer, either yes or no, together with a proof, for any given number N. Of course, it should at the same time be as fast as possible.

Examples of such tests include:

- cyclotomy tests: $O(\log N^c \log \log \log N)$
 * Gauss sums test: Adleman, Pomerance, Rumely (1979) [2, 15].
 * Jacobi sums test: Cohen, Lenstra, Lenstra (1980) [8].
 * cyclotomy tests: Bosma & van der Hulst (1990), Mihăilescu (1997) [17].
- elliptic curves tests: $O((\log N)^c)$: Bosma, Chudnovsy & Chudnovsky (1985) [7]; Goldwasser & Kilian [10], Atkin & Morain (1986) [5, 4].
- genus 2 curves: $O((\log N)^2)$, Adleman & Huang (1986) [1], the interest of which is mostly theoretical (can be proved to be polynomial probabilistic).

3. The Principles of ECPP

In this section, we shall describe the principles on which rests ECPP (which, by the way, stands for Elliptic Curves Primality Proving). This test is an analog of the $N - 1$ test which has been known for long, and is very efficient when the number $N - 1$ is smooth, i.e., has only small prime factors.

3.1. The $N - 1$ Test. Assume that N is neither even nor a prime power (these two possibilities can be easily avoided). Then we have the following

Theorem 1. N is prime if and only if $(\mathbb{Z}/N\mathbb{Z})^*$ is a cyclic group. In other words, there exists $a \in \mathbb{Z}$ such that $a^{N-1} \equiv 1 \pmod{N}$, and for all prime p dividing $N - 1$, $a^{(N-1)/p} \not\equiv 1 \pmod{N}$.

The triple $(N, \{p\mid (N - 1)\}, a)$ is a certificate of primality for N. It is very easy to check from these data that N is indeed prime.

A more practical version of this theorem (due to Pocklington, 1914) allows one to restrict to a set of prime factors of $(N - 1)$ whose product is larger than \sqrt{N}. This however does not address the main problem of the method, which is the need to factor $N - 1$, at least to some extent. Compared to this, finding a is a merely trivial matter: if the generalized Riemann hypothesis is true, there exists one such a smaller than $2(\log N)^2$.

3.2. Elliptic Curves. The main idea in the $N - 1$ test is that if a certain group is cyclic, then N is prime. Thus we just need to find a generator. Proving that a given number is a generator amounts mostly, from a computational point of view, to factor to some extent the order of the group.
The idea of Goldwasser and Kilian was to construct a vast number of groups of different orders with the same property that the $N - 1$ test, so that one can hope to find at least one such group with a smooth order.

Let us introduce quickly elliptic curves. Let K be a field of characteristic $\neq 2,3$. An elliptic curve defined over K is a projective nonsingular curve defined by an equation $Y^2 Z = X^3 + aX Z^2 + bZ^3$, where $(a, b) \in K \times K$. More concretely, $E(K) = \{(X, Y, 1) \mid Y^2 = X^3 + aX + b \} \cup \{(0, 1, 0)\}$, this last point being “at infinity”. The non-singularity can be expressed by the condition $\Delta := 4a^3 + 27b^2 \neq 0$. To an elliptic curve, we can attach an invariant defined by $j(E) = 1728(4a^3/\Delta)$. Conversely, given $j_0 \in K$, the family of elliptic curves $Y^2 = X^3 + 3j_0/(1728 - j_0)c^2X + 2j_0/(1728 - j_0)c^3$ has j-invariant j_0 (except when $j_0 = 0$ or 1728; for $j_0 = 1728$, take $Y^2 = X^3 + aX$, for $j_0 = 0$, take $Y^2 = X^3 + b$). The set of points of an elliptic curve over a certain field can be given a group structure by using the following rules: the neutral element 0_E is the point at infinity; if A, B, C lie on the same line, then $A + B + C = 0_E$. (Note that if a line has at least two points of intersection with a cubic (counting multiplicities) over a given field, then it has three, so that the addition is well-defined over the ground field.) This rule is illustrated on the following picture: $M_1 + M_2 + P = 0_E$ and $0_E + P + M_3 = 0_E$, so that $M_1 + M_2 = M_3$.

If $K = \mathbb{F}_p$ is a prime finite field, the group $E(K)$ is finite. We can however be much more precise:

Theorem 2 (Hasse, 1933; Deuring, Waterhouse). 1. One has $\#(E(\mathbb{F}_p)) - (p + 1) \leq 2\sqrt{p}$.

2. for all integer in $]-2\sqrt{p}, 2\sqrt{p}[$, there is a curve E defined over \mathbb{F}_p with exactly $p + 1 - t$ points over \mathbb{F}_p.

We now have to (a) find a primality criterion linked with these groups (b) make the second part of this theorem effective. The main feature of ECPP is the use of complex multiplication to solve problem (b).

3.3. A Primality Criterion

Both Goldwasser and Kilian’s method and the ECPP test are based on the following

Theorem 3. Let B be an integer, m and s two integers such that $s | m$, E an elliptic curve defined over $\mathbb{Z}/N\mathbb{Z}$ and P a point on E. Then $mP = 0_E$ and

$$\forall q \text{ prime s.t. } |m/q|P = (X : Y : Z), \gcd(Z, N) = 1 \Rightarrow \forall p | N, \#E(\mathbb{Z}/p\mathbb{Z}) \equiv 0 \mod s.$$

If we can find a point P satisfying the conditions of left part of this implication with $s > (\sqrt{N} + 1)^2$, then using Hasse’s theorem we see that any prime p dividing N is larger than \sqrt{N}, which means that N is prime. The primality can be easily checked given $(E, m, s, \{qs\}, P)$ (the certificate).
This theorem, together with Schoof’s algorithm which enables one to compute the number of points of an elliptic curve on a finite field in time $O((\log N)^8)$, leads to the following algorithm (Goldwasser and Kilian, [10]):

Repeat Choose a random elliptic curve E modulo N, compute $\#E(\mathbb{Z}/N\mathbb{Z})$.
until the primality criterion can be applied [i.e., $\#E(\mathbb{Z}/N\mathbb{Z})$ is smooth]

Note that the application of the criterion is most often recursive; one factors $\#E(\mathbb{Z}/N\mathbb{Z})$, and gets one large factor presumably prime. ECPP is then recursively used to actually prove the primality of this large factor. Since this factor is at worst $N/2 + o(N)$, the recursion depth is $O(\log(N))$. The complexity is thus $O((\log N)(\log N)^8)$, under the heuristic assumption (verified in practice) that there are many good curves (giving smooth $\#E(\mathbb{Z}/N\mathbb{Z})$).

This algorithm has been generalized to the case of curves of genus 2 (i.e., curves $Y^2 = f(X)$, where $\deg(f) = 5$ or 6) by Adleman and Huang. In that context, the algorithm can be proved to be polynomial probabilistic.

However, both of these algorithms are definitely impractical. First, Schoof algorithm has never been very efficient, and even with the more recent improvements which reduce the complexity to $O((\log N)^6)$, 4000 hours are needed to compute the cardinality of a single curve linked with the primality of a 500-digits number.

3.4. Complex Multiplication, or Finding Curves with a Smooth Number of Points.

A partial answer to the question (b) raised above is given by the theory of complex multiplication.

Let p be a prime number such that $4p$ is of the form $U^2 + DV^2$, where (U, V, D) are integers, with $D > 0$. Class field theory of imaginary quadratic fields tells us that given D, one can construct a polynomial $H_D(X)$, of degree $b(-D)$ (the class number of $\mathbb{Q}(\sqrt{-D})$), the roots of which generate the maximal abelian unramified extension (class field) of $\mathbb{Q}(\sqrt{-D})$. Moreover, this polynomial splits on \mathbb{F}_p as a product of linear factors, and its roots are the j-invariants of elliptic curves E with $\#E(\mathbb{F}_p) = p + 1 - U$.

For instance, for $D = 4$, $H_D(X) = X - 1728$ and one can take for E the curve of equation $Y^2 = X^3 + aX$. If $p \equiv 1 \pmod{4}$ or $p = 2$, $4p = U^2 + V^2$ and $\#E = p + 1 - U$. Note that U is only defined up to sign, and according to the choice of a (square or non-square mod p), both possibilities can occur.

The previous algorithm becomes:

repeat
repeat

Find D such that $4N = U^2 + DV^2$, and compute (U, V) using Cornacchia’s algorithm.

until $N + 1 - U$ is smooth;

find a root of $H_D(X) \mod N$ (use Berlekamp’s algorithm); construct E so that $j(E) = j_0$;

and choose among the family constructed an E such that $\#E = N + 1 - U$,

until one of the primality theorems can be applied.

4. Recent History

4.1. Recent Improvements.

In this section we describe shortly the recent improvements included in the last version of the ECPP software.

First of all, the problem of whether the number of points on the CM-curve is $N + 1 - U$ or $N + 1 + U$ is now almost completely solved. For $D = 3, 4$, this follows from a theorem by Katre. For $h = 1$, see [14]. For $D = 20$, see [16]. A recent paper by Stark [19] settles the case $(D, 6) = 1$. We have recently solved, using new invariants, the case $D \equiv 0 \pmod{3}$, and partially solved the cases...
$D \equiv \pm 1 \mod 3$ [18]. As a consequence, one no more needs to compute $[p + 1 \pm 1]P$ to find the exact cardinality of the curve.

Several implementation tricks have also been added: trial divisions steps have been improved, and I/O have been drastically reduced. The use of Montgomery's arithmetic has allowed a speedup by a factor of 2. Berlekamp's algorithm (which is used to factor the polynomial H_D over the field \mathbb{F}_p) has been adapted according to an idea of Atkin: Classically, one splits the polynomial P over \mathbb{F}_p by computing $\gcd(P(X), X^{(p-1)/2} \pm 1)$. If small factors of $p - 1$ are known, we can take a d-th root of unity ζ_d, and compute $\gcd(P(X), X^{(p-1)/d} - \zeta_d^i)$ for all $0 \leq i < d$. Instead of splitting the polynomial into two parts of degree roughly half of the initial polynomial, this should split it into several parts of smaller degree. Since our goal is just to find one linear factor, this should be much better, and indeed it is. This variant of Berlekamp's algorithm proved to be extremely efficient. Finally, backtrack was implemented at the request of E. Mayer, to allow one to restart interrupted computations. The current publicly available version of ECPP\(^1\) is v.5.6.1 which, though newer than the one in MAGMA, for instance, does not include any of the improvements or the tricks described above. The up-to-date version is version 6.4.5, currently unstable.

4.2. Records. Large primes proved to be prime by using ECPP software include the following "world records":
- Cofactor of $2^{21} + 1$ (564 digits, 458 hours on a Sun 3/60) (1988);
- Titanic ($2^{35} + 1$) (1065 digits, 328 days on a Sun 3/60) (1988);
- $p(1840926)$ (1505 digits, 4 years of Sun 3/60) (1992);
- $(2^{733} - 1)/2$ (2196 digits, 1 month on an Alpha 400 MHz, 6 hours to check the certificate) (1998, joint work with E. Mayer).

However, the record is now the property of P. Mihăilescu, using cyclotomy-based tests.

5. Conclusion

ECPP now seems to have reached a "stable" stage, where most of the theoretical problems with a real algorithmic pertinence have been solved, and the code has been cleaned and speeded up.

Perspectives include exploration of higher genus (à la Adleman-Huang). The main trouble is that the theory of complex multiplication is much more complicated in higher genus, and lots of practical problems arise when studying curves of genus ≥ 2.

Another direction of exploration which needs further development is to try to make the best two primality tests (ECPP and cyclotomy) interact with each other, for instance through the concept of "dual pairs", i.e., couple of integers (p, q) together with an elliptic curve E defined over \mathbb{Z} such that $\#E(F_p) = q$ and $\#E(F_q) = p$.

Bibliography

\(^1\) Available from http://www.lix.polytechnique.fr/Labo/Francois.Morain

