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The satisfaction of constrained formulae is a key issue in complexity theory. Many computational
problems are shown to be NP-complete through a polynomial mapping onto the K-Satisfiability
(SAT) problem. Recently, there has been much interest in a random version of the K-SAT problem
defined as follows. Consider N Boolean variables z;,7 = 1,..., N. Call clause C the logical OR of K
randomly chosen variables, each of them being negated or left unchanged with equal probabilities.
Then repeat this process by drawing independently M random clauses Cy, £ = 1,..., M. The
logical AND of all clauses, F, is said to be satisfiable if there exists a logical assignment to the ’s
evaluating F to true, unsatisfiable otherwise.

Numerical experiments have concentrated upon the study of the probability Py(a, K) that a
given F including M = aN clauses be satisfiable. For large sizes of N, there appears a remarkable
behaviour: P seems to reach unity for o < a.(K’) and vanishes for o > a.(K) [6]. Such an abrupt
threshold behaviour, separating a SAT phase from an UNSAT one, has indeed been rigourously
confirmed for 2-SAT, which is in P, with a.(2) = 1 [2, 5]. For larger K’ > 3, K-SAT is in NP
and much less is known. The existence of a sharp transition has not been proven yet but precise
estimates of the thresholds have been found: a.(3) ~ 4.25. Moreover, some lower and upper bounds
to a.(3) (if it exists), a;p. = 3.003 and a5 = 4.64 respectively have been established [4, 3].

The classical approaches to study the SAT phenomenon threshold are both combinatorial and
probabilistic. A statistical physics approach was used in [8, 9]. Such an approach allows properties
to be predicted. It has been applied already to random graphs and it has led to large deviation
results for the threshold phenomenon of random graphs in addition to previously known results.
This approach seems therefore to be powerful. However it proves much harder to apply to the
SAT threshold phenomenon. It yields in particular a surprising change concerning the proportion
of variables fixed in the neighbourhood of the threshold between 2-SAT and 3-SAT. This could
partly account for the complexity gap between these two problems. In order to apply the statistical
physics approach, the following steps were carried out.

First, the energy function corresponding to the K-SAT problem is identified. The logical values
of the z’s can be represented by N binary variables 5;’s, called spins, through the one-to-one
mapping S; = —1 (respectively +1) if ; is false (resp. true). We then encode the random clauses
into a M x N matrix Cy; in the following way: Cy; = —1 (respectively +1) if the clause C; includes
Z; (resp. x;), Cyi = 0 otherwise. Consider now the cost-function F[C,S] defined as the number
of clauses that are not satisfied by the logical assignment corresponding to configuration S. The
minimum E[C] of E[C,S], that is, the lowest number of violated clauses that can be achieved by
the best possible logical assignment [8, 9], is a random variable which becomes totally concentrated
around its mean value < F[C] > in the large size limit [1]. The latter is accessible through the
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knowledge of the averaged logarithm of the generating function
(1) 7] = Y exp (~E[C,S]/T)
S
since
< E[C]>»= -T < log Z[C] > +0(T?)

when the auxiliary parameter T is eventually sent to zero. Being the minimal number of violated
clauses, < FE[C] > equals zero in the SAT region and is positive in the UNSAT phase, allowing
the location of a.(K).

The calculation of the average value of the logarithm of Z in (1) is an awkward one. To circumvent

this difficulty, we compute the nth moment of Z for integer-valued n and perform an analytical
continuation to real n in order to exploit the identity

< Z[C]" »>=1+n < log Z[C] > +0(n?).

The nth moment of Z is obtained by replicating n times the sum over the spin configuration S and
averaging over the clause distribution [8]

(2) <ZICI'»= ) <exp (- zn:E[C,S“]/T) > .
S1,82,..8n

a=1

It is crucial to notice that the averaged term in (2) depends on the n x N spin replicas only through
the 2™ occupation fractions ¢(c¢) labelled by the vectors o with n binary components; ¢(o) equals
the number (divided by N) of labels ¢ such that S¢ = 6%, Va = 1,...,n. Taking into account the
combinatorial entropy of the labels ¢ at fixed occupation fractions,

L Z[C]" >~ exp(N Fraz)

where F),, . is the maximum over all possible zs of the functional [8]

n K
3) Fl{c}]=-) c(o)loge(o)+alog| Y e(o1)---c(ox)exp <_% DD élop + 1])

a=1 ¢=1
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The optimisation conditions over F[{c}] provide 2" coupled equations for the ¢s. Notice that F'is a
symmetric functional, that is, invariant under any permutation of the replicas . A maximum may
thus be sought in the so-called replica symmetric (RS) subspace of dimension n + 1 where ¢(0) is
left unchanged under the action of the symmetric group. Within the RS subspace, the occupation
fractions may be conveniently expressed as the moments of a probability distribution P(m) over
the range —1 < m < 1 [8]. Once the number of replicas n is sent to zero, we obtain a self-consistent
functional equation for the order parameter P(m) that can be solved numerically.

What is the meaning of the distribution P(m)? Consider a formula F and all the spin config-
urations S7, j = 1,..., N attaining the minimum E[C] of the cost-function E[C,S]. Define then
the average Boolean magnetisations of the spins

1N
() mi= 3 S

over the set of optimal configurations. Call H(C,m) the histogram of the m;s and H(m) the
average of H(C, m) over the choices of the formulae F. H(m)is a probability distribution over the
interval —1 < m < 1 giving information about the resulting constraints on the variables induced by
the clauses. It has been shown that, if the RS solution is the global maximum of (3) (and not only
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a local one), H(m) equals the above mentioned P(m) in the limit of large sizes N — oo. Therefore,
the order parameter arising in the replica calculation reflects the “microscopic” structure of the
solutions of the K-SAT problem.

Of particular interest are the fully fixed variables, that is the z;’s such that m; = £1. In the
following, the fraction of fully constrained variables will be denoted by v(a, ). Clearly, v(a, K)
vanishes in the SAT region otherwise the addition of a new clause to F would lead to a contradiction
with a finite probability. Two kinds of scenarii arise when entering the UNSAT phase. For 2-SAT,
v(a,2) smoothly increases above the threshold a.(2) = 1. For 3-SAT (and more generally K > 3),
v(@, 3) exhibits a discontinuous jump to a finite value 7. ~ 0.9 slightly above the threshold. While
a.(2) = 11is correctly found, the RS prediction for a.(3) = 4.6 exceeds the experimental estimates
by 10%. Work is currently under progress to refine the above calculation and enlarge the subspace
where the global maximum is sought in.

Qualitatively speaking, however, we expect the main conclusion of this work to be correct: the
SAT /UNSAT transition is accompanied by a smooth (respectively abrupt) change in the structure of
the solutions of the 2-SAT (resp. 3-SAT) problem. Furthermore, we conjecture that this discrepancy
is responsible for the difference of typical complexities of both models recently observed in numerical
studies [10]. The typical solving time of search algorithms displays an easy-hard-easy pattern as
a function of a with a peak of complexity close to the threshold. The peak time seems to scale
polynomially with N for the 2-SAT problem and exponentially with N in the 3-SAT case. From an
intuitive point of view, the search for solutions ought to be more time-consuming in the presence
of a finite fraction of fixed variables since the exact determination of the latter necessarily requires
an exhaustive enumeration of the variables. To test this conjecture, a mixed 2 + p-model has been
introduced; it includes a fraction p (resp. 1 — p) of clauses of length two (resp. three) and thus
interpolates between the 2-SAT (p = 0) and 3-SAT (p = 1) problems. The RS theory predicts that
the SAT/UNSAT transition becomes abrupt when p > pg = 0.41. Precise numerical simulations
support the conjecture that the polynomial/exponential crossover occurs at the same critical pg.
An additional argument in favour of this conclusion is provided by the analysis of the finite-size
effects on Py(a, K) and the emergence of some universality for p < pg. A detailed account of these
findings may be found in [7].
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