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Abstract

This talk addresses the random graph model originally introduced by Erdés et Rényi in
1959. This model gives rise to a large number of threshold phenomena that are evocative
of phase transitions in statistical physics. The talk illustrates the way several results on
random graphs can be reexamined in a new perspective provided by a simple model of
statistical physics, the Potts model. The problem addressed is principally that of the size
of the giant component for which quantitative estimates are derived.

More generally, the talk is motivated by a desire to understand what statistical physics
models may bring to the realm of threshold problems, not only in random graphs but also
in the satisfiability of random boolean formulee.

1. The Random Graph Models

The most natural random graph models have been introduced by Erdds and Rényi in a series

of eventually famous papers that starts with [5, 6]. They are denoted by G, and @n,e and are
defined as follow:

— G, considers graphs with n vertices in which each of the N = (g) possible edges is present
with probability p;
- éme considers all graphs with n vertices and e edges as equally likely.
The first model is of the Bernoulli type (there are N trials, each with independent probability p
of success), the second one is more “combinatorial”. Given the fact that the Bernoulli distribution
B(N,p) is narrowly centered around its mean Np, we expect the following fact.

The characteristics of G, , resemble those of Gme provided e &~ Np.

We refer globally to Bollobas’s book [4] for a discussion of these rich models and for precise condi-

tions that make the assertion above into a valid mathematical statement. (The transfer from G, .
to G, is an Abelian one, whereas the converse transfer has a Tauberian flavour.)

Imagine a graph as evolving in time from totally disconnected to complete, through successive
additions of edges that are reflected by increasing values of p from 0 to 1. What is characteristic
of G, , (and thus, of the companion Gme model) is the presence of sharp thresholds. A threshold
phenomenon for a property P means that there is a function po(n) such that, with (very) high
probability (as n — o0), P does not hold when p < po(n) while for p > po(n), P holds. (Of course,
one may look for all sorts of detailed informations near the threshold po(n).)

Here is a simplified picture of what goes on in G, ,, expressed in terms of the mean number of

1/2

edges, m = Np. Only isolated vertices and edges will be present when m < n*/*; but trees of size 3
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will start appearing at m &~ n'/2, trees of size 4 at m & n?/3, etc. There is (almost surely) no cycle
when m < n. Later when m = An/2 and A < 1 there is at most one cycle in each component and
the largest component almost surely has size O(logn). A dramatic phase transition occurs near
m = n/2 when one or several large components of size n2/® appear. Still later, when m = An/2
and A > 1, we find a single “giant” component of size ©(n). However, we’ll have to wait a little
longer, namely till m =~ %n log n, to attain full connectedness, at which point the graph ceases to
be interesting for the problems under discussion here.

There are various approaches to these problems. Most of them, following Erd6s and Rényi’s
original papers [5, 6], are probabilistic and well explained in [4]. Roughly, one has to cope in this
framework with random variables satis{ying intricate dependencies; moment methods, tail inequal-
ities, or probabilistic inequalities are then essential. The literature in this direction is immense and
Bollobéds’s book already includes more than 700 references. The best results relative to connect-
edness that are available at this time (formulated in terms of CA}me) are probably those of Bender,
Canfield, and McKay; see [1, 2, 3]. In contrast, only a handful of papers starting with Knuth,
Pittel, and collaborators resort to analytic methods!; see [7, 9]. Even fewer papers rely on methods
from statistical physics. The work under discussion here is a pioneering attack on this range of
hard problems; see [10, 11] for applications of related ideas to the random k-satisfiability problem.

2. The Potts Model

The Potts model of statistical physics considers particles or sites whose states (sometimes referred
to as “colours”) may assume any of ¢ values. In the particular case of random graphs, it instantiates
as follows. Consider n siles that we may imagine as regularly spaced on a circle. Each site may be

in a certain state that is an integer of {0,1,...,¢ — 1}. The integer ¢ is a parameter of the model
and when ¢ = 2, one can think of the states as “spins” representing the orientation of some vector,
e.g., a magnetic moment. A configuration ¥ = (04,...,0,) is an assignment of states to each site,

so that there are ¢ possible configurations. The energy of a configuration is defined as

E®)=-1%"1,.,,
=13 10
where 1, , is the indicator of z = y that has value 1 if 2 = y holds and 0 otherwise. There 7 is
a parameter; the fact that one takes all the N = n(n — 1)/2 combinations ¢ < j corresponds to a
model with complete interactions, that is, the underlying graph is the complete graph. (Models of
statistical physics often consider instead an underlying graph constrained to be a regular lattice in
dimension 1, 2, or 3.)
An essential object of statistical physics is the partition function defined here as

Z(ﬁh ’IZ) = Z e_E(E)a

b))

which is thus a sum of ¢" terms. There are two main points in the talk: (¢) the function Z
provides information on the random graph model; (i7) it is possible to estimate analytically various
characteristics of Z.

! As said by Frieze in his discussion of the paper by Janson, Knuth, Luczak, and Pittel [9] in the Mathematical
Reviews [MR94h:05070]: “The paper [9] and its predecessor [7] mark the entry of generating functions into the
general theory of random graphs in a significant way. Previously, their use had mainly been restricted to the study
of random trees and mappings. However, at the early stages of the evolution of a random graph we find that it is
usually not too far from being a forest, and this allows generating functions an entry.”
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3. The Partition Function and Random Graphs

First of all, the partition function is (almost) a counting generating function in disguise. One

has

ZHeXp< cw]) ZH (1+1Cw] e/ - ))

1< 1<J

as results from the identity 12 = 1. Next,

(1) 2om) = Y IT (14 210,0)

1<)
> ().
G

The first line (1) is a natural approximation for n large. In the second line (2), ¢(G) is the number
of edges of the graph G, ¢(G) the number of its connected components, and the sum is over all
graphs G with n vertices. The reason why (2) is true is that the general term of the sum involves
a product over all possible edges, and a product like u,, 5,%s,,0, has value 1 only if 01,0, 03 are
of the same colour, in which case there are altogether ¢ degrees of freedom.

Now, a graph G with n vertices and € edges has probability

p=(1) (-

n n

(2)

in the model G,, ,, where p = v/n and, like before, N = n(n — 1)/2. Then, equation (2) yields the
approximate formula,

(3) 2y = Y (G

(These approximations are stated here without error terms but it is not hard to assign them
sufficient validity conditions.)

4. The Potts Model and the Process of “Analytic Continuation”

In order to approach the number of connected components, we return to the definition of the
partition function and aim at transforming its expression. The energy, F/(X) depends on n variables,
but only through their ¢ possible values, with ¢ the parameter of the Potts model. Indeed, for
0 €{0,...,q— 1}, define the occupancy variables,

n
1
= — g 10’i,0’7
n “
=1

that describe how many times each value of {0,...,¢ — 1} is used by a configuration. One finds
easily that
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(The term v/2 is ignored in subsequent computations.) Now, grouping states according to the
values of their occupancy vectors {X,} yields

g—1
n on 2
Z(v,n)~ 52X
(v, n) E (nXO, .. .,an_l) P ( 2 Z ") ’

{Xo} o=0

where the X, are such that > _ X, = 1 and the X, go by steps of % (The original derivation
of Monasson makes use of manipulations with indicator variables that are related to the theory
of “replicas”.) Then, Stirling’s formula employed to approximate the factorials present in the
multinomial coefficient produces

(4) Z(v,n) = Z exp (—n (Z X,log X, + %EXC%)) .

{Xo}

The form (4) is indeed a g¢-fold sum and the original n-fold summations and products have been
eliminated.
The next step consists in evaluating what happens with the approximation (4) taken as

(5) Z("‘/,’IZ) ~ Z eXp(—’IZG({AXVU})).

{Xo}
The idea is to estimate the sum by means of the ¢g-dimensional Laplace method, which requires
locating the global extrema of the exponential. It is observed that local extrema at least are obtained
by trying

(6) Xo = 3(1 Flg=1)s),  Xi=-= X, = 3(1 9.

Then, the argument of the exponential in (4) is locally maximized if one fixes s as a root of

(7) log (qu%ﬂ e

It is believed that all global extrema are obtained in this way, up to permutation of indices. Under
this assumption, the Laplace method can then be applied to approximate Z(vy,n) as

(8) Z(y,n) ~ e "F),

where F' is essentially G({X,}) of (5) evaluated at the X, given by (6) in terms of ¢, s, where
s = s(7) satisfies the condition (7).

We now dive into a more conjectural world based on a special kind of formal reasoning The
principle of the heuristic analysis consists in extrapolating the asymptotic approximation of the
partition function that is defined a priori for integer values of ¢ only and make it an analytic
function of g. Then, let ¢ tend to 1 and hope for consistency. Once this is done, various results
that can be checked successfully against known ones (via analytic or probabilistic methods) are
obtained.

Let us postulate the validity of (8) for all real ¢, and in particular for ¢ near 1.Within this
framework, the mean number of connected components of a random graph of G is for instance
accessible as ((X') denotes expectation):

nyy/n

@ (eG) = oloe Zrm)|
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where real values ¢ — 1 are used. For the region of interest which is thus ¢ near 1, equation (7)
becomes 1 — s = €. This equation defines s as a function of 7, s = s(y). The parameter s(7) is in
fact an indicator of the fraction of sites in the largest connected component of the random graph.
There is a bifurcation at s = 1. The function s(7) is identically 0 when vy < 1, a fact consistent with
known properties of the random graph before the emergence of the giant component. At s = 1T, the
function s(7) has a square-root singularity, while it becomes analytic for s > 1. Thus informations
about the giant component and its “phase transition” become amenable to this approach (details
omitted in this abstract).

5. Discussion

A summary of the methodology is as follows. For a given problem, there are a priori two
“partition functions”,

Zcomb = Z P(G)qC(G)7 thys = E e_E(E)-
G b

The process is then as follows.

1. Choose the configuration space and energy function so that Zeomb & Zphys-

2. Evaluate Zppys by: (%) identifying the order parameters (the X, ); (i¢) determining asymptotic
approximations (here by the Laplace method); (¢i7) performing an analytic “continuation”
according to the chain “(¢ integer) — (g real) — (¢ — 1)”.

The major question to ask is why and to what extent does this approach provide useful quan-
titative result. Certainly, the approximations for fixed integer ¢ can be justified. Also there is a
possibility of matching the analysis near ¢ = 1 against what we know from analytic approaches.
(For instance, it is known that the emergence of the giant component is related in an essential way
to the occurrence of two coalescing saddle points.) So, in a way, the most surprising fact to be
explained is that estimates initially conducted for integer ¢ only (we used a ¢-dimensional Laplace
method!) can be “analytically continued” to the region of ¢ near 1.

We observe that complex analysis does sometimes provide a framework for such analytic continu-
ation. Forinstance, a theorem of Carlson asserts that when a function ¢(s) is analytic (holomorphic)
in a right-hand half-plane and is of moderate growth, ¢(s) = O(e™=9I5l) then: ¢(s) vanishes iden-
tically if and only if it vanishes at the nonnegative integers. Therefore, an identity A(s) = B(s)
can be inferred just from its specialization at the integers? provided it is known a priori that A, B
don’t grow to fast. For instance, it suffices to establish

sin? =7 + cos? ™
4 4 ’
for s = 0,1,..., in order to be sure that it holds for all complex s. Observations of this kind
however fall short of providing a basis for the analytic continuation process employed here, given
the intricate nature of the approximations involved.
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