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Abstract

Generalized polylogarithms are complex, multivalued functions with singularities at z = 0
and z = 1. We calculate the monodromy at the two singularities. As opposed to the classical
polylogs [11, 12], the monodromy of generalized polylogs involves the so-called “multiple zeta
values,” [14] which play an important role in number theory, knot theory [4, 6, 5, 10], and
physics [7, 9]. Via monodromy of polylogs, Radford [13] showed that the C-algebra of
polylogs is isomorphic to the C-algebra of non-commutative polynomials in two variables—
a “shuffle algebra” freely generated by the so-called Lyndon words. Here, monodromy is
used to give an induction proof of the linear independence of the polylogarithms. We also
obtain a Grobner basis of the polynomial relations between “multiple zeta values” using
the techniques of non-commutative algebra. By expressing multiple zeta values in terms of
the Grobner basis, one obtains symbolic algebraic proofs of relations between multiple zeta
values.

1. Polylogarithms and Combinatorics on Words

Let X = {z¢,21}. To any word w = x81_1x1x82_1x1 - -xék_lxl we associate the multi-index
s = (s1,82,...,5;) and define the generalized polylogarithm

Lis(z) = Lis(z) = Y "

ny>ng > >np >0
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The associated multiple zeta value is (,, = ((s) = Li,(1) = Lis(1). The shuffle product is defined
on words by the recursion

zumyv = z(umyv) + y(zumw),

where 2,y € X and w and v are words on X. We can extend the shuffle product linearly to
the non-commutative polynomials Q(X). The resulting polynomial algebra, denoted Shg(X) is
commutative and associative.

The Lyndon words L are those non-empty words on X that are inferior to each of their right
factors in the lexicographical order. They are algebraically independent and generate Shg(X ), thus
forming a transcendence basis. More precisely, a theorem of Radford [13] states that the algebra
Shg(X) is isomorphic to the polynomial algebra generated by the Lyndon words, i.e. Q[L].
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2. Relations between Multiple Zeta Values

There are countless relations between multiple zeta values [1, 3, 2]. We content ourselves here
with providing only two examples:

C2,1)=¢3) and ((2,2,1)= —5((5) + 3(2)((3).

It turns out that a large class of relations can be explained by the collision of two distinct shuffles
obeyed by the multiple zeta values. We’ve already seen one type of shuffle. It provides relations of
the form Cumw = (u(y. A second type of shuffle provides relations of the form (u ., = (4 (, and is
defined by the recursion

(s1,8) % (t1,1) = (s1, 8% (11,1)) + ({1, (s1,8) * 1) + (51 + t1, s % 1),

where we have used the multi-index notation s = (s2,ss,...,sx), t = ({2,t3,...,1,) of Section 1.
With a slight abuse of notation, we define a map ( : w — (,, extended linearly in the natural way
to Q(X). Then ( is a Q-algebra homomorphism which respects both shuffle products. Thus, if I is
the ideal generated by the words wmv — u * v, then I C ker(. We can compute a Grobner basis for
the ideal I up to any given order using only symbolic computation. The first relation above is the
unique basis element of order 3. The second relation above is one of five basis elements of order 5.

3. Monodromy of Polylogarithms

To compute the monodromy, we use the standard keyhole contours about the two singularities
z =0 and z = 1. The monodromy is given by

MoLiyz, = Liyg, + 27iLi, + - - -
MiLiyg, = Liyg, — 2miliy, + -,

where the remaining terms are linear combinations of polylogarithms coded by words of lengths
less than the length of w. For example, using the computational package Axiom, we find that

MiLiy, = Liy,, M;Li,, = Li,, — 2, MjLiy ., = Lige, — 2miLis,,

and so on. The generating series of the generalized polylogarithms is

L(z)= ) wliy(2),

weX*

with the convention that Liz»(2) = (logz)"/n!. Drinfel’d’s differential equation [8, 9]

L= (2472 1

z
is satisfied, with boundary condition L(€) = exp(zgloge) + O(1/€) as € — 0+. It turns out that L
is a Lie exponential, and this fact can be used to obtain asymptotic expansions of the generalized
polylogarithms at z = 1.

4. Independence of Polylogarithms
Theorem 1. The functions Li,, with w € X* are C-linearly independent.

Corollary 1. The C-algebra generated by the Li,, is isomorphic to Shc(X ). By Radford’s theorem,
the generalized polylogarithms coded by Lyndon words form an infinite transcendence basis.
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Corollary 2. Fach generalized polylogarithm Li,, has a unique representation as a Q-polynomial
in polylogarithms coded by Lyndon words. The classical [11, 12] polylogarithms Liy, which are coded
by the Lyndon words xg_lxl, are algebraically independent.

Proof of Theorem 1. Given n > 0, assume that
(1) D Alinw =0, A €C,

where |w| denotes the length of the word w. We prove by induction on n that A,, = 0 for all w, the
case n = 0 being trivial. Rewrite (1) as

M+ Y AugoLiugg + Y Auz Liug, =0,
Jul<n [ul<n

Applying the operators (Mg — Id) and (Id — A7) on this latter expression, yields two new linear
relations

271 Z|u|:n—1 /\uzoLiu + E|u|<n—1 puLiy =0,

211 E|u|:n—1 Augy Liy + E|u|<n_1 v Li, =0,
for certain coefficients u,, and v,. By the induction hypothesis, the coefficients A,;, and A,z with
|u| = n — 1 all vanish (as well as the coefficients p, and v,,). Consequently,

Z ApLi, =0,

jwl<n—1

whence A, = 0 for all w, again by the induction hypothesis. O
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