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1. Examples and previous results

Consider an urn that contains balls of k different colors 1,2,..., k. There is a set of evolution
rules: (i) a ball is chosen at random from the urn, where all balls are equally likely; (7i) that ball’s
color or type is noted, and the ball is returned to the urn; (4ii) if the ball had color ¢, a;; balls of
color j are added to the urn.

Question of interest. What is the composition of the urn after n draws?

The model is encoded in the addition matriz A = [oy;], 1 < 1,7 < k. The o;; may themselves
be random, but this talk is concerned exclusively with deterministic a;;, i.e., the case of a fixed
addition matrix A.

Pélya and Eggenberger (1923) investigated the two-color problem, with A = sI and s a positive
integer. Suppose the two colors are red and blue, and let R, and B, be the number of red and
blue balls after n picks.

Frample. Set s = 2 and start with two red balls and one blue ball. One of eight possible length-3
runs is: Pick blue (probability 1/3), the composition of the urn is now Ry = 2 and B; = 3; Pick
blue (probability 3/5), R; = 2 and By = 5; Pick red (probability 2/7), Rs = 4 and Bs = 7.

What is the typical behavior of R,, and B,? Bernard Friedman (1949) studied a more general

urn, the addition matrix now being A = [?} g] Freedman (1965) showed that

n E n
Ry 2w (0,1), By N (0,1), where R = R — E[R,)
VIR,

and B} is defined similarly.

2. The connection to random trees

Recall the random permutation model for binary trees, where n keys are inserted into a binary
tree such that the root of any subtree is larger than all left and less than all right descendants. We
have a uniform distribution on the n! possible key orderings and wish to compute tree statistics
associated to this model.

The Poblete-Munro (1985) heuristic suggests that we can obtain a more balanced tree with little
extra work: we require that all subtrees on the fringe and of size at most three be balanced. This
means that we rebalance size 3 subtrees on the fringe, if necessary. This process yields shorter
trees; in fact E[D,] = (12/7)Inn (compare with 2Inn for standard RBSTs).
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2.1. Balanced trees. Work by Yao (1978) on 2-3 trees, Baeza-Yates, Gonnet and Ziviani on other
tree statistics 9, shows that we can study F[S,] by studying fringe configurations of RBSTs, to
obtain bounds of the type fi(n) < E[S,] < fa(n). Fringe analysis is based on exact counting of
all (sub)trees less than or equal to a given height. The results improve in accuracy as the height is
increased.

Mahmoud (1998) has used Pdlya urn models to study the Poblete-Munro heuristic. We map
fringe configurations to colors. The growth of the tree is modeled by a 3 X 3 urn. Suppose an
incoming node is placed on one of the four leaves of a balanced subtree on three nodes. It is
inserted without rebalancing the tree. Its sibling is a leaf. Suppose the next node is placed at that
leaf. No rebalancing is required. Finally suppose that the next node is not placed at the sibling
leaf, but rather at a leaf of the previous node. The tree must be rebalanced. We distinguish these
three configurations by assigning different colors to the leaves concerned: color 1 to the leaves of
any terminal node whose sibling is not a leaf, color 3 to the leaves of any terminal node whose
sibling is a leaf, and color 2 to all such leaves. The leaves correspond to balls in a Pélya urn. The
complexity measure of an insertion is the number of rotations, call it R,. The addition matrix of
the Pdlya urn becomes

-2 1 2
A=14 -1 =2
4 -1 =2

E.g., if we replace a leafl of color 1, we lose that leafl and recolor its sibling with color 2. The new
leaves have color 3. R, is therefore the number of picks of color 3. The row sums of the addition
matrix A form the vector § = [1,1,1]7, which reflects the fact that every BST on n nodes has n+ 1
leaves.

If an addition matrix A has the property that there exists an m such that all the entries of A™
are positive, we say that A is regular. In this particular example, A is not regular; nonetheless
Mahmoud (1998) shows that

R, —2/T
By =270 » N (0,66/637).
NG

2.2. m-ary search trees. Under this model m—1 keys k1, ko, ..., k1 are placed at the root of the
tree. These keys partition the remaining keys into m intervals, (—o0, k1), (k1,k2), ..., (kmn-1,+0),
i.e., subtrees. The construction is recursive and the branch factor is m.

FExample. Let m = 3 and consider the keys 9,16,4,23,11,10,... The first two keys are placed
at the root, the key 4 is placed to the left of 9 and starts a new subtree, 23 is placed to the
right of 16, also in a new subtree, and 11 and 10 fall between 9 and 16, starting a new subtree
with root intervals (9,10), (10,11) and (11,16). There are three types of nodes (or blocks in a
hardware-oriented setting): leaves, nodes that contain a single key, and nodes that contain two
keys.

More generally, we ask about S, the number of nodes after n insertions, where 5, = > ; X

and Xj counts the number of nodes that contain 7 keys. We construct an urn model by mapping
gaps between keys at a node to balls whose color indicates the number of gaps at that node. We
can recover the number of nodes of each type from the number of gaps of the corresponding color.
For instance, consider a leaf that contains ¢ keys and hence ¢+ 1 gaps. We map these gaps to balls
of color 7 + 1. Now suppose that : < m — 1 and we insert a key at this leaf. We lose 2 + 1 gaps of
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color 24+ 1 and gain ¢ + 2 gaps of color ¢ + 2. The addition matrix associated to this model has the
following shape:

R r+1

m -1

The eigenvalues of the addition matrizx A. Order the eigenvalues according to their real part,
letting Ay be the eigenvalue whose real part is the largest. Athreya and Nay (1972) showed that if
the real part of Ag is less than half the real part of Ay, a condition guaranteed if A is regular, then
the colors have a normal N (0,1) distribution.

In the urn model associated to m-ary trees, this property holds for m < 27, even though the
associated urn is not regular. (This suggests that regularity is too strong a precondition for the
results of Athreya and Nay.) When m = 27, there are two conjugate eigenvalues whose real part is
larger than half the real part of A\;. More precisely, Lew and Mahmoud (1994) showed that for any

sequence ¢, Cy,...,Ck, where ¢; is the cost of a node that contains j keys, the vector of random
variables X,, = [X!, X2, ..., X*]T converges to a multivariate normal, i.e.,
X, — F[X,]

NG ZMVN(,A)  for  m=2,3,...,26.
2.3. Paged binary trees. In this model every external node stores at most b keys, while internal
nodes store a single key. Overflow on external nodes is processed by splitting the node according
to some splitting rule, say by selecting the median and adding two subtrees whose roots store b/2
keys. The corresponding counting problem leads to a differential equation in F(z,y), the super
exponential generating function of paged binary trees:

0" F(z,y) (3F(w,y))2_

ozb-1 oz
PBSTs have been considered by Flajolet, Mahmoud and Martinez Parra. Results that are based
on Pdélya urn models indicate that there is a phase transition at b = 118, when the real part of
the second eigenvalue of the addition matrix becomes larger than half the real part of the first
eigenvalue. Work in progress by Flajolet et al. seeks to construct an interpretation of this fact in
the context of generating functions.

3. Case study: plane-oriented recursive trees

This type of tree models a recruiting process where the recruiting probability of a recruiting officer
increases with the number of recruits attracted so far, or more generally, where the probability
of a node to receive a new node is proportional to its degree, a scenario that Mahmoud (1991)
calls “success breeds success.” We use plane-oriented recursive trees as the underlying model®,
as proposed by Bergeron, Flajolet and Salvy (1992). Every node has outdegree 2k + 1, for some
k > 0; k of its children are plane-embedded nodes, and k + 1 leaves are placed in the gaps between
adjacent nodes.

'If we were using the terminology of combinatorial analysis, we would refer to these trees as increasing trees; more
precisely, as R-enriched increasing trees, where R is the list structure.
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Consider a chain letter scheme where the acquisition price of a letter is 100F, and copies of the
letter are sold at 40F. Given that there are n participants in the scheme, we ask how many of them
have just broken even, i.e., sold three letters. Let blue represent insertion slots at nodes that have
bought, but not sold a single letter; red, nodes that bought and sold one copy of the letter, green,
two copies, and white, three, i.e., broken even, and let B,,, R,, G, and W,, be the corresponding
RVs. (We start with a single participant, i.e., Bo = 1, Rg = Go = Wy = 0.) Finally, assume that
the success probability of a participant is proportional to the number of letters sold (other models
are possible and even reasonable). The addition matrix is easily seen to be

0 2 0 0
1 -2 3 0
A= 1 0 -3 4
1 0 0 1

E.g., if a participant has sold two letters and sells another, the three green insertion slots at the
corresponding node are replaced by four white ones, and a new participant who has not sold any
copy of his letter yet must be accounted for. Note that A is not regular. It can be shown that B,
is the number of leaves in a random tree of size n + 1.

Mahmoud, Smythe and Szymanski (1993) show that

B, 1/3
El{R.] ~ | 1/6 | (2n+1),
G, 1/10
and that the covariance matrix is
1/9 —8/45 -1/15

Cov(By, Ry, Gy) ~ | =8/45  23/45  —11/105 | n.
~1/15 —11/105 —179/350

We sketch the proof of this result. Introduce the indicator variables IT(LB),IHR),L(IG), L(IW) so that
R)

L(IB) + L(ZR) + L(ZG) + ng) = 1. We now haveeg., R, = R,,_1 + QIT(LB) - 21r7(I , and hence

E[R,) = E[R,_1] + 2E[I\P)] — 2E[1{F)].
The expectations of the indicator variables are obtained by conditioning on the n — 1 picks that
lead to a particular urn (call this o-field T},_1), so that

Bn—l (Tn—l)
2n —

E[By]

and E[IP)] = 5 1"
n_

E[I{P) | Tn] =

Substitute to get

E[R,] = F[R,-1] + QQE[B”]

o BB
n—1 2n —1°
Similar computations for E[B,], E[G,] and E[W,] yield a system of recurrences of the form
[B'rm Rn7 Gn7 Wn]T = F(n)[Bn—l ) Rn—17 Gn—17 Wn—l]T
where F(n) is a matrix that depends on n. This system may be solved asymptotically. (Note that
we have made critical use of the fact that the total number of balls in the urn is a function of n,
namely 2n 4 1.)

The computation of the covariance is more involved. Start from R, = R,_1 + QIT(LB) — QIT(LR) as

before, square both sides and use simple properties of mutually exclusive indicator variables to get

R2=R}  +4I1BR, | — a1\ R, | +41(B) 4 41(F),
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Binary cross products of the four RVs appear on taking expectations, i.e., we develop recurrences
for E[R%] = E[R,R,] and these recurrences involve terms like

E[I®BR, 1= E|E[IP)R,_, | Tn_l]}

n

- E[Rn—lE[IT(LB) | Tn—l]} = E[Rn_l B ] = ElRn—1Bn-1]

2n — 1 2n —1
The result is a system of recurrences in all binary cross products that yields the desired asymptotics.
Next consider the vector X; of centered RVs;

B B; 1/3
Xi=|R'|=|R|-(2i+1)]| 1/6
Gx G; 1/10
Mahmoud, Smythe and Szymanski (1993) show that
X: b 1/9 —8/45 -1/15
~—— S MVN [0, [ -8/45  23/45 —11/105
v ~1/15 —11/105 —179/350
The proof uses martingale techniques. Recall that a martingale is a sequence Yp,Y5, Y3, ... of

random variables such that E[Y,, | T,,—1] = Y,—1. E.g., consider a fair game (“win all or lose all
with equal probability, i.e., 1/2”), which gives

1 1
ElY, | Tha] =0 'Yn—1§ + 2Yn—1§ =Y, 1.
Note that E[Y,] = E[Y,-1] = --- = E[Y1] = 0 in this example; this is known as the martingale

difference property, because if Y7,Y5,Ys, ... is a martingale, then E[Y, — Y,_1 | T,—1] = 0. We
can reconstruct the martingale from the sequence of first differences, i.e., via > 7 | AY, = Y.
More generally, we can construct a martingale from any sequence of random variables that has the
martingale difference property; this was done e.g., by Régnier (1989) in the context of algorithms,
who showed that the cost of Quicksort has a limit distribution.

If E[AZ; | T;—1] = 0, then A, =} " | AZ; is a martingale, because

n n—1 n—1
EA | Toal = E|Y AZi | Tuoa| = B|AZy+ Y AZi | Tuoa| =Y AZi= Apy.
=1 1=1 1=1

By linearity, F[AZ; | T;—1] = 0 implies E[b;AZ; | T;—1] = 0 for any sequence of constants {b;}, and
hence > 7" | b;AZ; is a martingale.
We return to the four-color urn of the chain letter scheme; consider the color blue.
1
E[B; | Tica] = BB + (1= 1) | Tica| = Biy + 1= EUP) | Tia] = Bioa 41 = 57— B
Z j—

Further manipulation yields
E[B;—1/3(2t+ 1) | T;-1] = (Bi—1 — 1/3(2e = 1))+ 1/3(2¢ = 1) — 1/3(2i + 1)

1 .
1 g (B — 1/3(2i - 1) ~ 1/3

and hence E[B} |T;_1] = B> ; — B} ,/(2i—1). B} is not a martingale but
1

B* _ B* - p*
% 2—1+2i_1 1—1
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is a martingale difference, because F [AM? | Tn_l] = 0, where we have set

1

B

AMP = B - B, + 5— B

We can construct a martingale from AMP, since) " 4 b; AMP is a martingale for any sequence {b;}.
The Cramér-Wold device can be used to prove convergence to a multivariate normal. Suppose

we seek [Xy(bl), XT(LQ)7 X7(13), .. .,szj)]T B MVN(0, A). It suffices to prove that any linear combination

of the XT(L') converges to a normal distribution, i.e.,

on XD 4, XD 4.y anT(Lj) Dy (0,001,.0,) 5

ap,ag,...,a; arbitrary. Here j = 3 and we study W,, = a1 B}, + au R}, + a3G,. Centering the
remaining two variables, we have
1

FIB; ~ By | Tl = 5 Bl
FIRY — Ry | Tia] = o (Biy — Riy)
FIGE ~ Gl | Tinl = 45 (R~ GEy),
Introduce the martingale differences
AMP = B; - B+ B
AMP = B — Ry — 5o (BLy — BLy)
AM = G}~ GLLy ~ 5o (Riy — Gy)

k
and set V. = Z (bmAMf3 + cmAMf% + dmAM?) for arbitrary {b;,},{cin},{din}. It remains to

1=1
choose {b;,} ,{¢in} and {d;,} . Expand V,,,, to get

1
Voo = b (B; = i+ i ) oo (B = B g B ) o
To obtain the particular linear combination a1 B} + a3 R, + asG}, we set b, = a1, so that the term
in B} is preserved, and choose the remaining b, ; to cancel B}, _,, B, _, etc. This technique can be
used to show that given ay,ay and a3, we may choose constants {b;,}, {¢;n} and {d;,}, so that

V'rm = (&1B:L —|— O[QR;; —|— QSG:L) — 3/261n —|— 10/3d1n,
which by a martingale central limit theorem yields

B*

B* * * /o - n

byt ool 0sGn  Vin o poice WD N (0,00,0). | B 2 MYN(O,A),
NG NG vn G:

n

Concluding remark

It should be obvious from the highly restricted class of addition matrices that have been con-

sidered that an abundance of combinatorial problems and possible addition matrices remain to be

analyzed; e.g., apparently simple instances such as [% 2] and H ?] have so far resisted attack.



