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Abstract
This talk investigates algorithmic issues related to the formal resolution of algebraic differen-
tial systems, with a stress on the problem of testing components inclusion. Index reduction
and applications to control theory are also considered.
News are also given of the diffalg2 maple package which improves upon Boulier’s work
and will be part of a future Maple distribution.

1. Basic Algebraic Results

1.1. Differential Algebras. Details may be found in the classical book by Ritt [12], which remains
an illuminating reference. The two first chapters provide a clear exposition of basic definitions and
results. Some details on the low power theorem may be found in chapter 3. The book by Kolchin [9]
is a reference book reserved to those having a good familiarity with the subject. Chapter 2 of
Buium’s book [3] is also a good introduction to differential algebra. The remaining chapters may
be quite hard without a good previous knowledge of “modern” algebraic geometry, but contain
many interesting new results. The paper [6], and thesis [8] contain details on the components
problem. Details on Boulier’s algorithm can also be found in [1, 2].

Differential algebra is a generalization of classical commutative algebra. We complete the ring
structure with the datum of a set of mutually commuting derivations A = {6y,...,6,}. We may
then define differential fields, modules and algebras in a straightforward way. A differential ideal
of a differential ring A is an ideal [ such that 61 C [, for all é € A. Let A be a differential ring,
and I be a differential ideal, then A/I has a natural structure of differential ring. The smallest
differential ideal containing a set ¥ is denoted by [X].

We define differential polynomials in the following way: if A is a differential ring with derivation
set A, O the free commutative monoid generated by A and X a set, the differential polynomial
algebra A{X} is the polynomial algebra A[@X] equipped with the only derivation set whose action
restricted to A and ©X is that of A.

Let A be a Ritt ring, i.e. a differential ring containing Q. Then for every differential ideal I C A,
the radical ideal /T is differential. A differential ring A is radically Noetherian if for every set
3} C A there exists a finite set B such that \/m = \/E In the sequel, we will denote the perfect

closure /[X] by {X}.
Theorem 1 (Ritt-Raudenbush). If A is radically Noetherian, then for all finite set X, A{X} is

radically Noetherian.
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83



84

Corollary 1. Le I be a radical differential ideal, then I is a finite intersection of prime ideals
Niz1 P

1.2. Differential Field Extensions. Let F be a differential field, and P be a prime differential
ideal of F{X}, then the quotient ring F{X}/P is a differential domain, and we can consider its
fraction field K. So we can associate to any prime differential field P a differential field exten-
sion K/F.

It is clear from the theorem above that a system of equations ¥ C F{X} admits solutions in
some field extension of F iff {¥} # 1. So we need an algorithm to test if a system is consistent.

2. Algorithmic Tools

2.1. Boulier’s Algorithm. Boulier’s algorithm [2] is able to solve such problems as eliminating
differential variables, and testing consistency of a differential system. It provides a description
of the set of solutions as a finite union of algebraic quasivarieties, i.e. Zariski open subsets of
differential algebraic varieties. Each of them is described by a characteristic set A (see [12] for a
precise definition of this notion), according to a compatible ranking on the set of derivatives, and an
inequation hy # 0. Let up denote the greatest derivative of a polynomial P. The separant of P is
Sp = 0P/0up. As hy is a multiple of the products of separants of polynomials in the characteristic
set, the ideal [A] : A% is radical. Unlike Ritt’s algorithms, Boulier’s avoids factorizations for better
efficiency. This is why it cannot return prime components.

Boulier’s algorithm first proceeds by constructing an autocoherent set by repeated pseudo Euclid-
ean reductions. An autocoherent set A being found, one need to test that it is the characteristic set
of a radical differential ideal. According to Rosenfeld’s Lemma, this may be reduced to an algebraic
problem. We only have to test that A is a characteristic set of the algebraic ideal (A) : A%’. This
may be done by computing a Grébner basis of the ideal (A, hqw — 1), using an extra variable w
and Rabinovich’s trick.

2.2. Singular Solutions and Inclusion of Components. A difficult problem of differential
algebra is to test whether two irreducible components defined by their characteristic sets are in-
cluded one in the other. We are only able to test equality, and have necessary conditions, sufficient
conditions, but no necessary and suflicient condition in the general case.

Consider a single polynomial equation: P(t,y,.. .,y(T)), where P is prime. The perfect ideal
{P} is a finite intersection of prime ideals, P;, associated to characteristic sets reduced to a single
polynomial A;. The general component A; is associated to P. The other correspond to essential
prime components assuming that the P; are not included one in the other.

Boulier’s algorithm, like Ritt’s algorithm, produces the characteristic sets A; of singular compo-
nents, but also characteristic sets B; corresponding to the singular locus of the differential algebraic
variety corresponding to the general solution. (Notice that, as we avoided factorizations, the A;
need not be prime and can represent more than one prime component.) The B; and the A; cor-
respond to the solutions of the perfect ideal {P, Sp}. We have {P} = {P,S5p} N {P} : Sp. The
solutions corresponding to non essential singular components are Zariski adherent to the regular
place of the general component.

We may remark, that according to [11], determining the essential singular components is equiv-
alent to finding a finite basis of {P} : Sp, i.e. to have an effective version of the Ritt-Raudenbush
theorem.

2.3. Some Effective Criteria of Inclusion. For a differential equation of order 1, the singular
solutions are envelopes of regular ones. E.g., for the equation (y')? — 4y, the solutions in the general
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component are parabolas y(t) = (¢ + ¢)%, and the essential singular solution y = 0 is the envelope
of these parabolas.

If we have a prime decomposition, we can obtain an algorithm for finding the minimal essential
components of {P} by using the low power theorem of Ritt.

Theorem 2. The prime differential ideal {y} is an essential component of { P}, iff the lower degree
terms of P do not contain any strict derivative of y.

From this, we deduce that {y} is not an essential component of y'? — 4y>. In such a case, the
regular solutions are of the form y(¢t) = 1/(¢ + ¢)*. When ¢ goes to infinity, then y goes to 0. So
the solution y = 0 is adherent to the the set of regular solutions. See [12, Chap. 6] for analytical
versions of this adherence property.

The necessity proof relies of Levi’s lemma which characterizes the monomials belonging to the
differential ideal [y”] [12, Chap. 2], or on Kolchin’s domination lemma. The sufficiency proof was
obtained by Ritt, using a Puiseux series expansion.

In the case where we want to test the inclusion {P} : Sp C {@Q} : Sg, where @ # y, we need
to find a preparation polynomial, i.e. a polynomial M(z) = Eg:o cym~(z) such that ¢, does not
belong to {Q} : Sg, CP = M(Q) and C' is not a zero divisor modulo {Q} : Sg. An algorithm is
given to compute a preparation polynomial.

We also have a low power theorem for regular differential polynomials (see Hubert [7]). This
theorem, together with Boulier’s algorithm allows to find a minimal regular decomposition for { P}
without performing factorizations.

Theorem 3. (Sufficiency) Let P be a non zero differential polynomial of F{Y'}, ) a square free
polynomial. Assume thal the preparation polynomial of P with respect to Q is M = ¢z + R,
where R € [2]P™Y, p > 0 and c is partially reduced with respect to Q. Then, Q/gcd(Q,¢c) is the
characteristic set of an essential singular component of P.

(Necessity) Under the same hypotheses, if the preparation polynomial is M = cozp—l—zizl CyMry +
R, where R € [2]PT!, the ¢, are partially reduced with respect to @, then Q/gcd(Q,co,...,c0) is a
characteristic set of a redundant component.

2.4. Implementations. The Rosenfeld-Grébner algorithm of Boulier, implemented in the Maple
package diffalg, has been improved with the new version diffalg2. Functions for computing
preparation polynomials and finding initial components were added. It is available on the Web
with a clear documentation, and an impressing set of examples.

3. Applications

3.1. Control Theory. Elimination in differential algebra allows to go from state-space to input-
output representation by eliminating the state variables. It allows to test observability [4] and
identifiability [5, 10].

Consider a system of the form z; = Pi(z,u),y; = @;(«). To test observability, one has to compute
a characteristic set for an ordering eliminating the variables z. The system is observable iff for each
variable z¢, the characteristic set contains a polynomial whose z¢ is the main derivative. Such a
polynomial gives an implicit expression of z, as an algebraic function of the outputs y and the
inputs or commands u and their derivatives. This makes such an expression of little applicability,
due to the noise.

3.2. Implicit Systems. If we consider an implicit system P;(z’,2) = 0 where det(@Pi/ax;-), it
is not possible to compute a power series or a numerical solution in a direct way. The system is
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not formally integrable. In fact, solutions, if any, do not exist for all initial conditions, and one
may need first to determine the variety of compatible initial conditions. For this, one will need to
differentiate the equation a number of time which is known as the index of the system. Computing
characteristic sets, using the Rosenfeld Grobner algorithm is a way of doing it.

[11]

[12]
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