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Abstract

Classic works of Karlin-McGregor and Jones-Magnus have established a fully general cor-
respondence between birth-death processes and continued fractions of the Stieltjes-Jacobi
type together with their associated orthogonal polynomials. This fundamental correspon-
dence can be revisited in the light of the otherwise known combinatorial correspondence
between weighted lattice paths and continued fractions. For birth-death processes, this ap-
proach separates clearly the formal apparatus from the analytic-probabilistic machinery and
neatly delineates those parameters that are amenable to a treatment by means of continued
fractions and orthogonal polynomials.

1. Birth-Death Processes

Consider a particle initially in state 0 that, at any given time, may change to another state 1
(where it stays), with rate A. This means that the probability of a state change in an interval of
time of length dt is Adt. Then, the probability pg(t) that the particle is still in state 0 at time ¢
satisfies

po(t 4 dt) — po(t) = —Apo(t)dt

or py(t) = —Apo(t), whose solution is an exponential distribution,

po(l) = e M.

Similarly, a particle initially in state 0 that may change either to state 1 with rate A or to state —1
with rate p will satisfy (p;(¢) is the probability of being in state j at time ¢)

A
po(t) = e (1) = et e OFmty (1) = Ai—u(l Oty
The interpretation is obvious: the particle stays in state 0 for a random amount of time with an
exponential distribution of rate A + g and then changes to states —1,4+1 with probabilities equal
to to A/(A+ p) and p(A+ ).

In a general birth-death process a particle can be in any state in {0,1,2,...} and when in state j,
it can only change to state j 4+ 1 at rate A; or to state j — 1 at rate u;. By analogy with the model
of an evolving population (whose size is represented by the state), the A; are called birth rates and
the p; death rates. The general problem is to understand the evolution of a process given values
(or properties) of its birth and death rates; see [12, Ch. 4] for an excellent introduction.
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Let p,(t) be the probability of being in state n at time {. An essential réle is played by the
coeflicients

AoAr Ay
Ty = —————.
K12 - - Hn
Indeed, a classical result asserts that the process is ergodic (the expected time to return from each
state to itself is finite) if and only if

ZTFTL<OO7 Z/\lﬂ_ :—|—OO

n>1 n>0

(The first condition ensures the existence of an invariant measure for the embedded discrete-time
Markov chain; the second one guarantees that, in the continuous-time process, the particle is not
absorbed at infinity in finite time.) In that case, one has
vy
:= lim 1) = —"—
Pr = lim po(1) ST
where these quantities represent the long run probability of being in state n.
More puzzling is the nonstationary behaviour of the process that is described by the infinite-
dimensional differential system

(1) pi(1) = Ajapi—1(t) = (A + wi)pi(1) + pipapipa(t),  pi(0) = bj0.
Although finite-dimensional versions are “easy” and reduce to combinations of exponentials, it is
precisely the infinite-dimensional character of the system that renders its analysis interesting.

In a series of important papers, Karlin and McGregor [10, 11] have developed a general connection
between the fundamental system (1) and an associated family of orthogonal polynomials. Later,
Jones and Magnus constructed a direct continued fraction representation; see [8, 9].

This summary is an account of Guillemin’s lecture (see [5, 6]), as well as of later developments.
The point of view that is adopted here consists in relating the combinatorial theory of lattice paths
to birth-death processes in the following way: () trajectories of birth-death processes are precisely
lattice paths; (¢7) lattice paths have generating functions expressed as continued fractions; (7i7) the
Laplace transform expresses the main parameters of birth-death processes as weighted lattice paths
to which the combinatorial theory applies.

2. Lattice Paths and Continued Fractions

It is known that the formal theory of continued fraction expansions for power series is identical to
the combinatorial theory of weighted lattice paths; see [1, 2, 4]. Define a path v = (Uy, Uy, ..., Uy,)
to be a sequence of points in the lattice N X N such that if U; = (z;,y;), then z; = j and
lyj+1 — y;| = 1. If successive points are connected by edges, then an edge can only be an ascent
(a: yj41 —y; = +1), a descent (b: yj4+1 — y; = —1), or a level step (¢ yj4+1 — y; = 0). Thus a
path is always nonnegative and by a horizontal translation, one may always assume that zg = 0.
A path can be encoded by a word with a, b, c representing the three types of steps. What we call
the standard encoding is such a word in which each step a,b, ¢ is subscripted by the value of the
y-coordinate of its associated point. For instance,

w = apgayay bgCQ Co09 b3b2 bl apgcCy

encodes a path that connects the source Uy = (0,0) to the destination U;; = (12,1). We freely
identify a path v defined as a sequence of points, its word encoding w, and the corresponding
monomial.
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We consider various geometric conditions that may be imposed on paths: Hy; is the collection

of all paths that connect a source at altitude % to a destination at altitude I, HISH

of height (maximal altitude) at most h, etc.

denotes paths

Theorem 1. The collection Ho o of all paths has generating function

1

apby

aiby

Proof. Tt suffices to observe that (1—f)™! = 14 f+ f% 4 - generates symbolically all the sequences
with components f. For instance, in Hg o, the expressions
1 1 1

1-— CO’ 1 - Co — (Iob17 1 aobl

(2)

1—C1

generate successively paths composed from ¢q level steps only, paths of height at most 1 without ¢;
steps, all paths of height at most 1. The complete continued fraction representation is easily built
by stages in a similar fashion. O

In particular, the collection of all paths from level 0 to level 0 with height at most h is

K Pr
(3) Heg'=or

a rational fraction, whose numerators and denominators, Py, ), each satisfy the recurrence

Y1 = (1 — ¢n)yn — an—1bryn_1,

with @1 = Py =0, Qo = P = 1. (Linear fractional transformations are 2 x 2 matrices in disguise!)
Well-known path decompositions, like those based on first or last time at which levels are reached,

can then be used provided they are combinatorially “unambiguous”. This and simple manipulations

on linear fractional transformations give access to many geometric constraints in addition to (2)

and (3). We cite here some representative identities from [1, 2],

<h agay - - - Gp—1 1

= Hok bk (QkHO,O_Pk)v

[
4 H - -
(1) i = T Hop= o

Qr
Hy; = Hyo— P
(5) B e e b D (QiHoo — ),

where the latter holds provided k& < [.
The forms (2), (3) (4), (5) can be converted into bona fide counting generating functions of paths
weighted multiplicatively by means of the combinatorial morphism,

x(ar) = apz, X(bx) = Brz, x(ex) = Yz

In that case, the continued fraction (2) becomes the general fraction of the J-type (for Jacobi);
see [7, 9, 13].
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3. The Connection

We illustrate here in its simplest form the many-faceted connection between birth-death processes
and continued fractions. It was apparently first stated explicitly by Jones and Magnus but it is
implicit in earlier works of Karlin and McGregor. The connection goes through the probabilities
pi ;(1) of being in state j at time ¢ starting from state ¢ and the Laplace transforms,

o0
Pii(s) :/ pij(t)e™*" dt.
0
Theorem 2. The Laplace transform of the probability of return to the origin satisfies
1

P =
ba(s) Aopa

Ao+ s —
0 A1tz

AL+ s —

We offer here two proofs. A third proof that is based on “uniformization of time” can also be
given but is omitted in this note.

Proof 1. Take the Laplace transform of the fundamental system (1) (so that p;(t) = po ;(¢)) and use
the induced relations on the ratios Py /Py y+1. This proof is the most direct but the least illuminat-
ing from a structural standpoint. In particular, this proof does not provide an immediate grasp on
the question of deciding which parameters are amenable to continued fraction representations. [

Proof 2. Examine the times at which the (continuous time) birth-death process {A;} changes states.
This defines an embedded (discrete time) Markov chain {Y,,}. Then the set of trajectories of the
chain {Y,} is exactly the family of lattice paths of Section 2. The method consists in splitting the
probabilities by conditioning according to all legal trajectories.

— The first observation is that, given a lattice path w = wyw; - - - w,, the probability pgo(t | w)
of being back to 0 at time ¢ having followed the path w is

Pr{A; =0 |w} =Pr{Sy, + Sg + 4 S <t, Sqy + S + 4 S + Sgpss > 1},

where S5, is the random variable that represents the sojourn time at the state ¢; determined
by wy - - -w;, while the right-hand side involves ¢, that ranges over all legal “continuations”
of w (in the case of Hyg, one has w,41 = ag and ¢,41 = 0). As seen already, the sojourn
time at some state e is exponential with parameter (A, + . ) so that its Laplace transform is
(Ae 4 pe)/(s+ pe + Ac).

— The second observation is that the probability of a path in the embedded chain is the product
of the individual transition probabilities, namely A;/(A; + p;) and p;/(A; + ;).

The different sojourn times are independent by the nature of the process (the strong Markov
property satisfied by {A¢}). Also, sums of independent random variables correspond to products
of Laplace transforms. Thus, the Laplace transform of the probability in the continuous model
of following a path w has a product form; for instance, to w = agaibsay, there corresponds the
transform

( Ao A1 2 A )( Ao + o A1+ Ao + o A1+ )
Ao+ fio A1+ g1 Az pe A+ sStXotpostAMturs+ratpues+rd+u/)
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Thus, the Laplace transform Py o(s) is, apart from a fudge factor of 1/(s+ Ag), a sum over all paths
lattice from zero to zero weighted multiplicatively by the probabilistic morphism,

) 1
6 "a:) = J ; "h) = J —,
(6) X (aj) SN+ X (b;) St A+ 4
with x'(¢;) = 0. In other words, one has Py (s) = X/(HO,O)ﬁ7 and the statement follows. O

The same method applies to the computation of transition probabilities, the analysis of maximum
height, and so on. For instance, the probability of reaching state £ has

1
Por(s) = ———— (Ar(8)Pyo(s) — Bi(s
#(8) = = (k) Poofs) — Bi).
where Ay /By is the kth convergent of the continued fraction that represents Fyg, so that Ay, By
are simple variants of x'(Px), X' (Qr).
Orthogonality. In the case of paths, the reciprocals of the @, polynomials, Q,(z) = 2"x(Q)(z™")
are formally orthogonal with respect to a measure defined its moments,

(7) £l = [ #dutz) = Hog

Formal aspects of paths and orthogonality are detailed in Godsil’s book [3].

A similar orthogonality property then holds for the probabilistic counterparts Ay, By of the
P, Q) polynomials. This provides alternative expressions of various probabilistic quantities in
terms of scalar products involving the measure p of (7). One can rederive in this way, via the
combinatorial theory, a number of formulz originally discovered by Karlin and McGregor. For
instance, one has

pnl) = [ 0, ()6, () dpu(x),

where the 8 polynomials (closely related to the By and Q) satisfy the recurrence A,0,41 + (z —
A'rL - ,un)gn + ,unen—l =0.

4. So What?

The original motivation for the talk comes from the need to elucidate the behaviour of certain
queueing systems in the context of telecommunication applications. For instance, the single server
queue (M/M/1) is modelled by A; = p, p; = 1, while the infinite server queue (M /M/o0) cor-
responds to A\; = p, u; = 7. (Models of population growth lead to considering different types of
weights, like A; = (j41)p, p; = 7.) More specifically, the problem is to quantify parameters of some
simple statistical multiplexing scheme that describe the quality of service on an ATM link. The
relevant model is that of the M /M /oo queue and parameters are to be analysed, like the duration
f of an excursion above some level ¢, the volume V of lost information, or the number of bursts C
in a busy period.

Each parameter leads to a specific continued fraction representation. By Theorem 2, the basic
continued fraction of the M /M /oo process is

lp
S+p—

s+1+p— —
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This is recognizable as an instance of Gauf}’s continued fraction associated to a quotient of con-
tiguous hypergeometric functions. The numerator and denominator polynomials are the Poisson-
Charlier polynomials that are orthogonal with respect to the Poisson measure.

The quantity V' (area) leads to challenging asymptotics questions both for the M /M /oo queue
and for the M/M/1 queue. A simple modification of the basic techniques of this note shows that
the bivariate Laplace transform with (s, ) “marking” (¢,V) is obtained by the modified morphism,

A [
"as) = : J 7 "y = : J )

x"(a;) s+ ju+ A+ X (6;) s+ ju+ Aj+ py

In the case of area under the M/M/1 queue, quotients of continuous Bessel functions make an

appearance. Stripped of its probabilistic context, the corresponding problem of tail estimation
then admits a purely analytic formulation:

Problem. Let A(z) be a function whose Laplace transform is
2
i - L0 ()
)= —— —~ 7
NN
Ve (B2

with J, a Bessel function, and p > 0 a parameter. Show that, for some constants ¢y, cs,
one has

v(s) = (14 p)/s,

/ A(y)dy ~ cyz=4e=o2VE, (z — +00).

Under plausible analytic or probabilistic conjectures, precise (and useful!) quantitative conclusions
can be drawn. See the papers by Guillemin and Pinchon [5, 6] for full developments.
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