The Analysis of Hybrid Trie Structures

Julien Clément

Algorithms project, INRIA Rocquencourt
October 20, 1997

[summary by Frédéric Cazals]

1. Introduction

Tries are a general-purpose data structure of the dictionary type, that is supporting the three
main operations Insert, Delete and Query. To see how they are defined, let A = {aj};le be an
alphabet and S be a set of strings defined over A. The trie associated to S is recursively defined
by the rule

trie(.9) = (trie(S'\aq), trie(S\az), . .., trie(S\a,))

where S\« refers to the contents of S consisting of strings that start with a and stripped of their
initial letter, and the recursion stops as soon as 5 contains one element.

Searching a trie T for a key w just requires tracing a path down the trie as follows: at depth
i, the ¢th digit of w is used to orientate the branching. (Insertions and deletions are handled in
the same way.) To complete the description, we need to specify which search structure is used to
choose the correct sub-trie within a node. The main possibilities are:

1. the “array-trie” which uses an array of pointers to sub-tries. This solution is relevant for small
alphabets only, otherwise too many empty pointers are created;

2. the “list-trie” that remedies the high-storage requirement of the “array-trie” by using a linked
list of sub-tries instead. The drawback is a higher cost for the traversal;

3. the “bst-trie” which uses binary-search trees (bst) as a trade-off between the time efficiency
of arrays and the space efficiency of lists.

In particular, the bst-trie can be represented as a ternary tree where the search on letters is
conducted like in a standard binary search tree, while the tree descent is performed by following
an escape pointer upon equality of letters. We shall refer to this data structure as a ternary search
trie or tst. An example trie with its basic representation and the equivalent ternary search trie
over the alphabet A = {a,b,c} is represented on fig. 1 and 2. As is well known, the performances

ETh

NEN e

b iNEN TN

e NEN

B N @ @
NEN
-y

FicurE 1. Basic trie FiGurEe 2. Its ternary search trie representation

123

124

of tries depend upon the probabilistic properties of the strings processed. More precisely, we shall
work with two types of models:

— The models for the infinite strings inserted in the tries. These models depend upon the number
of strings inserted—either a fixed number n or the output of a Poisson random variable P(n)—
and also on the way the characters are emitted after one another—either independently or
with some memory scheme such as a Markov process or a continued fraction.

— The models for the finite keys inserted in the tst nodes. Examples of such models are the multi-
set model {a*,a5?,...,a’"}, the Poisson model P(n,p;) or the Bernoulli model B(n,p;). It
should be emphasized that since the infinite strings are drawn independently, their ith letters

are also independent, which is matched by the previous models.

The quantities we are interested in to capture the tries performances are defined as follows:

Definition 1. The comparison path length of a tst ¢ is defined as the sum of the distances from
the root to the external nodes, expressed in number of comparison pointers. Similarly, for a string
s, the search cost R(s,t) is defined as the number of comparison pointers followed when accessing
s in t. More precisely,

(1) L(t) = l(root(t)) + Z L(t;) and R(a;s,t) = riroot(t)) + R(s,t;)

with /() the number of external nodes in the sub-tries pointed at by comparison pointers and r;()
the cost of searching a; in the bst present at the root of ¢.

2. Tools Used to Perform the Analysis

2.1. Left-to-Right Maxima, Shuffle Product and Formal Laplace Transform. Let w be
a word of A*. The ith letter of w denoted w; is called a left-to-right maximum if w; > w;,j =
1,...,2— 1. For example, the permutation ayasaiasays has three left-to-right maxima, respectively
@y, a3z and as. If one builds a bst from a permutation, the left-to-right maxima are naturally in
bijection with the nodes located on the rightmost branch. For the analysis to be performed in
section 3.1, we therefore investigate left-to-right maxima.

Clearly, all the possible decompositions of words by sets of left-to-right maxima are encoded by

the regular expression
,

A =T+ aj(ar + -+ a;)%).
J=1
Marking a; by the two variables zz; together with w if it is a left-to-right maximum yields the
generating function
,

] B 2UT;
Niax(z, 4, 21, 23, .,) = H (1 * L—2(zy+---+ l‘]))

i=1

whose coefficient [2"u*z7" ...2""] is the number of words of length n that have k& maxima and n;

occurrences of the letter a;. A similar formula holds for Ny, the generating function of minima.
Another tool we shall use is the shuffle product m from which a word can be decomposed into
words contained certain letters only:

('A\{a})* = (al +- 4 (la_l)*m(aa_l_l 4+ -4 ar)*_

This product corresponds to the following operation on generating function

()] =X (5 (0)re)-

A nice way to handle it is through the formal Laplace transform defined by £ [En fni—ﬂ =>, "
In particular we have f(z)mg(z) = £ [L7Y[f(2)]- L71[g(2)]] -

3. Main Results

3.1. Search Costs in Bst. We analyze the cost of searching a letter a, in the bst bst(w) built
from the letters of a word w from A*. More precisely: given a letter a, and a word w, the search
cost ¢,(w) is defined as the number of edges on the branch corresponding to a, in the bst built
from the letters of w. In particular, we are interested in condensing the cost related informations
in the formal sum

(2) Cy = Z ua (W) . qp

wEA*
whose exponent of u refers to the search cost ¢,(w). To see how ¢,(w) can be evaluated, observe
that w = prefix(w) a,? suffix(w) where a,? means that the letter a, may be absent. The
interest of this decomposition is to show that the cost of searching a, in the bst built from w is
chargeable to prefix(w). And since prefix(w) can be expressed as the shuffle product on the sets of
letters aq,...,aq—1 With as41,...,a,, the formal sum (2) yields the value of Cy(z,u,z1,...,2,):

Zx o
Nmax(Z, %, 1, .« o, T 1) Npin(2, Uy Zaa1, ..y Ty 1+ .
(Vo1 o i) (14 = S0

This form condenses all the information on costs. For example, the generating function of average
costs is obtained by differentiating with respect to « and setting « = 1. For example:

Theorem 1. The mean search cost of the letter a, in a bst built from the Poisson model is

E[C.] = D (L= e o) with Py = Zpy

[4,0]

min(u,v)<j<max(u,v)
i#a

3.2. Exact Analysis. In this section, we outline the analysis of the statistics introduced in def. 1.
The crux of this analysis consists in using quantities that are independent from the source model
the keys are generated by. To see how this works, consider the Poisson process of parameter z. The
number Ny, of strings that have a given prefix h obeys a Poisson law of parameter pyz, with pp the
source dependent probability for a random string to start with the prefix h. Then, the probabilistic
behavior of the tst that corresponds to the prefix h is described by a Poisson model of parameter
{#pn} with individual letter probabilities {p;,}, with p;;, the conditional probability to have the
prefix h followed by the letter a;. Applying theorem 1 locally and unwinding the recurrences (1)
yield

Theorem 2. The comparison path length and the comparison cost of a random search in a ternary
search trie made of n keys have expectations given by

E[Z], —QZZW’”M[J1= 14 (1= Pali, 4D,

heA* i<y

Rl.=2Y zp“fh;u—u—w i)

hEA* 1<] [

126

array-trie (standard) list-trie bst-trie (tst)

Pointers T in in
Hs Hs Hs
Path length Ln log n —gn log n én log n
Hs Hs Hs
*
Search HLS log n SI—‘; logn IC{—‘Z logn
TABLE 1.

with Ppli, j] = 327 _; Pr-h and pr.o = Prpajh-

A noteworthy feature of this theorem is its independence from the source model since its deriva-
tion uses solely the independence of the digits processed. It can therefore be instantiated for the
three models mentioned in section 1.

3.3. Asymptotic Analysis. We aim at finding asymptotic equivalents to the quantities of theo-
rem 2. These quantities are harmonic sums amenable to a treatment with the Mellin transform [2].
The Mellin machinery applied to the formulae of theorem 2 requires evaluating the p;; proba-
bilities. This is done under two models: a memoryless (a.k.a. Bernoulli) source outputting infinite
strings where the letter a; has probability to appear independently of past history; and a Markov
one producing letters with an initial distribution and with transition probabilities p;;. Singularity
analysis on the Mellin transforms (combined with the so-called Dirichlet depoissonization) yields

Theorem 3. The comparison external path length and random search cost for a ternary search tree
built on n keys produced by a source S, either memoryless (m) or Markovian (M), have averages
that satisfy
Cs Cs
E[L], = —nlogn+ O(n) and E[R], = —logn+ O(1)
HS HS
where the entropy Hg and the quantily C's are source-dependent constants.

3.4. Comparative Studies. Theorems 3 and 2 quantify precisely the access costs for tst. The
same analysis can be carried out for the list-trie variant, while the parameters describing standard
array-irie stem from Knuth’s books. The results are summarized in table 1—with C};, and C3;
constants known in closed forms—and show that the three structures have logarithmic costs and
require linear space. In order to assess the relevance of these theoretical analyses, a simulation
campaign was undertaken on Herman Melville’s novel, Moby Dick. Its conclusions are [1]:

Ternary search tries are an efficient data structure from the information theoretic point
of view since a search costs typically about logn comparisons. List-lries require about 3
limes as many comparisons. For an alphabel of cardinality 26, the storage cost of ternary
search tries is about 9 times smaller than standard array-tries.

Bibliography

[1] Clément (Julien), Flajolet (Philippe), and Vallée (Brigitte). — The analysis of hybrid trie structures. In Proceedings
of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms. pp. 531-539. — Philadelphia, 1998.

[2] Flajolet (Philippe), Gourdon (Xavier), and Dumas (Philippe). — Mellin transforms and asymptotics: harmonic
sums. Theoretical Computer Science, vol. 144, n° 1-2, 1995, pp. 3-58. — Special volume on mathematical analysis
of algorithms.

