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Abstract

A random tree is defined as an elementary event w of a probability space (Q, F, P). The
probability P depends on the random model of trees which is analyzed. The main results
concerning the Galton-Watson processes are recalled. If for n € N, 7, is the number of
individuals of the N-th generation and m the average number of children generated by an
individual, it is shown that the martingale (Z, /m™) plays an important role in the analysis
of such processes.

The Catalan trees are seen as a particular case of Galton-Watson process. The height
of a Catalan tree with n nodes is of the order Cy/n (Flajolet-Odlyzko) and the number of
external leaves has a limiting distribution (Kesten-Pittel).

The binary search trees are related to a branching random walk, hence to marked trees.
The analysis of their height involves large deviations results for this random walk; for a
binary search tree with n nodes, it is of the order C'logn (Devroye, Biggins).

1. Probabilistic Model

Definition 1. If @) = (¢;) is a probability distribution on N (¢; > 0 for ¢ > 0 and E;":Og ¢ = 1),
a Galton-Watson process with generating distribution @ is a sequence of random variables (Z,,)

defined by
Z;
Zo=1,  Znj =Y Gin,
=1

where the (Gy;), i,j € N are independent identically distributed random variables with distribu-
tion Q.

Forn € N, Z,, is the number of individuals at the n-th generation. By convention the generation 0
contains only the ancestor (Zy = 1) and the ¢-th individual of the n-th generation has G, children.

The underlying tree structure of such a process is obvious. It is nevertheless convenient to
reformulate these processes within the framework of trees [9]. A tree w is a subset of

U={0}u [N
n>1
with the following properties:

1. ) € w, i.e. the ancestor is in the tree;

2. Ifu-v € w, then u € w, (u-v denotes the concatenation of strings);
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FIGURE 1. Trees as subsets of U

3. If u € w then there exists N,(w) € N such that v -j € w if and only if 1 < j < Ny(w). The
variable N,(w) is the number of children of the node u. By convention Ny = N.

With this notation, the tree of the Figure 1 can be represented as
w=140,1,2,3,21,211,2111,2112,22,221, 31,311} .
If w e U, |u| will denote the length of the string w, in particular
H(w) = sup{lul,u € w},

is the height of the tree w and if z,(w) = {v € w,|u] = n}, then Z,(w) = Card(z,(w)) is the
number of individuals of generation n. Finally, if v € w, T),(w) will denote the subtree containing
the elements of w whose prefix is u. In the example of Figure 1,

Tgl(W) = {@, 1, 11, 12} .
Definition 2. A Galton-Watson tree with generating distribution ) is a probability distribution P
on the set of trees such that
1. P(N =k) = q;
2. Conditionally on the event {N(w) = n}, the subtrees T} (w), T5(w), ..., Ty(w) are independent
with distribution P.

The first condition says that the number of children of the ancestor has distribution (). The
other condition gives an homogeneity property (the subtree T;(w) and w have the same distribution
for ¢ < n). The independence of the behavior of the individuals, corresponds to the independence
of the G;1, ¢ =1,...,nin our first definition. From now on, (Z,,) denotes a Galton-Watson process
associated to Q.

2. Limiting Behavior of Galton-Watson Trees

Notice that if gg = P(N = 0) > 0, then it is possible that an individual does not generate
children at all. Consequently, a complete extinction of the family of the ancestor is also possible.
The following proposition describes this phenomenon.

Proposition 1. If m = E(Gy11) = E;OS 1q; is the average number of children per individual, then
+oo
P (ZZ” < —I—oo) =q,
n=0

where q is the smallest solution s € [0,1] of the equation E;-F:Og ¢st = s. If m <1, the Galton-
Watson becomes extinct with probability 1, that s, g = 1; and tf m > 1 then ¢ < 1.

We can now state a classical theorem for Galton-Watson processes.

Theorem 1. The process (W,,) = (Z,,/m™) is a positive martingale with expected value 1, further-
more the sequence (W,,) is almost surely converging to a finite random variable W.
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Refinements. The following theorems give more insight on the behavior on the sequence (Z,).
There are three theorems, one for each of the three cases m > 1, m = 1 and m < 1.

Theorem 2 (Kesten-Stigum [7]). If m > 1, the following conditions are equivalent
1. (Z,/m™) converge to W in Ly(P);
2. E(Nlog N) = 1% klog(k)g, < +o0;
3. PIW=0)=gq.

The above result is mainly a strengthening of Theorem 1. It can be proved in an elegant way [8]
with the formalism we described in the introduction. This proof uses a change of probability and
the martingale (W),,).

The following theorem is more informative from a qualitative point of view. It says that in the
critical case (m = 1) the variable Z, grows linearly conditionally on {Z, > 0} (remember that in
this case, almost surely Z,, = 0 for n large enough).

Theorem 3. If m =1 and 0 = Var(N) < +00, conditionally on the event {Z, > 0}, the random
variable Z, /n converges in distribution to an exponential distribution with parameter o /2.

The same conditioning procedure as in the critical case does not lead to the same phenomenon
in the sub-critical case (m < 1). Basically the conditioned variable Z, stays bounded.

Theorem 4 (Yaglom [10]). If 0 < m < 1, then conditionally on the event {Z, > 0}, the random
variable converges in distribution to a finite random variable.

3. Catalan Trees, Dyck Paths and Galton-Watson Processes

Definition 3. 1. A Catalan tree with n nodes is a random tree for the uniform distribution,
that is, the probability of a tree w is P(w) = (n+ 1)/(*"), if Card(w) = n and 0 otherwise.
2. A Dyck path of length 2n is a positive path with the jumps 1, —1 starting at 0 and finishing
at 0 for the 2n-th jump.
3. An excursion of the simple random walk is the trajectory of the walk until it reaches 0 for the
first time. A simple random walk is a walk which starts at 0 and whose jumps are 1 and —1
and equally likely.

Proposition 2. — The set of Calalan trees of size n and the set of Dyck paths with 2n steps
have the same cardinality.
— The Galton-Watson process with Q = (1/2') and the excursions of the simple random walk
are isomorphic, i.e. there is a bijection which maps a Galton-Walson process to an excursion
and preserves the distributions.

Proof. The picture below shows how an excursion is transformed into a Galton-Watson process.
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Ficure 2. Equivalence between Galton-Watson processes and excursions
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Remark. If one draws a contour starting at the left of the root of the tree in Figure 2 and following
the vertices of the tree, when the contour arrives on the right of the root, its height will have
performed the path followed by the random walk of Figure 2 above 1.

(1]
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