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Abstract

The Hermite reduction is a symbolic integration technique that reduces algebraic functions
to integrands having only simple affine poles [1, 2, 7]. While it is very effective in the case
of simple radical extensions, its use in more general algebraic extensions requires the pre-
computation of an integral basis, which makes the reduction impractical for either multiple
algebraic extensions or complicated ground fields. In this work, Manuel Bronstein shows that
the Hermite reduction can be performed without a priori computation of either a primitive
element or integral basis, computing the smallest order necessary for a particular integrand
along the way.

1. Preliminaries

We recall in this section some terminology and results from [2, 4, 6] that will be needed in the
main algorithm. Let R be an integral domain, K its quotient field and E a finitely generated
algebraic extension of K. An element a € F is called integral over R if there is a monic polynomial
p € R[X] such that p(a) = 0. The set

Or = {a € E such that « is integral over R}

is called the integral closure of R in F. It is a ring and a finitely generated R-module. A basis of
FE over K that generates Or over R is called an integral basis. Any submodule of Op is finitely
generated over R.

Let now k be a differential field of characteristic 0 with derivation ’. An element ¢ in a differential
extension of k is called a monomial over k if t is transcendental over k and t' € k[t], which implies
that both k[t] and k() are closed under differentiation. We say that p € k[t] is normal (with respect
to ’) if ged(p, p')=1, and special (with respect to °) if ged(p, p')=p. Factors and products of specials
are special, and factors and least common multiples of normals are normal. Note that normal
polynomials are squarefree. Conversely, for p € k[t] squarefree, let ps; = ged(p,p’) and p, = p/ps.
Then, ps is special and p,, is normal.

2. Extending a Module

Let R be a Euclidean domain, K its quotient field, V a finite-dimensional vector space over K
with basis (wy,...,w,) and M, = Rwy + --- + Rw, the module generated by (w1, ..., w,). Let
w €V and M = Rw+ M, be the module generated by (w, wy,...,w,). We describe in this section
an algorithm for computing a generating set (my, ..., m;) of M over R.
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Since (wy,...,w,) generates V over K, we can write

w==(aw + -+ a,wy,)

d

where d,al,...,a, € R and d # 0. This implies that M is the submodule of R(1/d)wy + ---+
R(1/d)w,, generated by wy, ..., w,,w, i.e., by the rows of

d

a az ... Qp

Using Hermitian row reduction, we can zero out the last row of M, obtaining a matrix of the form

b171 bLQ e bl,n
b271 b272 e bgm
N _ . .
bn,l bn,2 . bn,n
0 o ... 0

with b; ; € R. A generating set for M over R is then given by
1 .
m; = Ezbivjwj for 1<7<n.
J=1

The cost of this computation is O(n®) operations in k[t].

3. I-Bases

Let k£ be a differential field of characteristic 0 with derivation ’, ¢ a monomial over k, R = kl[t],
K = k(t), F a finitely generated algebraic extension of K and O the integral closure of R in E.

Given any vector-space basis (wq,...,w,) of E over K, let f; ; € K be such that
k13

(1) wh = Zfi,jwj for 1<i<n
i=1

and F,, € R be the least common multiple of the denominators of all the f; ;’s.

Definition 1. With the above notations, we say that (wy,...,w,) is an [-basis if F}, is normal
and w; € O for each «.

For any vector-space basis of E over K we have an algorithm for transforming it into an I-basis
within O(n?) operations in k(t).

4. The Lazy Reduction

With the notations as in the previous section, let (wy,...,w,) be an I-basis for E over K, the
fi,;’s be given by (1), F), be the least common multiple of the denominators of all the f;;’s, and
M., be the n by n matrix with entry £, f; ; at row ¢ and column j. Let f € F and write

f_A1w1-|--"-|-Anwn
B D
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where D, Ay,..., A, € k[t] and ged(Ay,...,A,, D) = 1. Let D = dyd3-- dzﬁ be a squarefree
factorization of D, d;, = ged(d;,d}) and U; = d;/d; s for each i, § = dLSd%S- dgﬂ o U =
U1U22 <. UM and V = Upqq. Then,
D= suvmtt
where S is special, V' and all the squarefree factors of U are normal, and ged(U,V) = 1. Let
Gy = Fy/ged(Fy, UV). Note that G, | oy | G UV. In addition, gcd(G,, V') = 1 by construction,
and since the basis is an I-basis, F,,, and therefore G, are normal.
Consider the following linear system in k[t]/(V):

Bl Al

9 GV e G UV B,2 — G5 42
F w

BTL ATL

where M! is the transpose of M., I, is the n by n identity matrix, and S~! is the inverse of §
modulo V. The classical Hermite reduction (where the w,;’s form an integral basis) proceeds by
computing a solution of (2) in k[¢]/(V') and using it to reduce the poles of the integrand. Even with
an I-basis, any solution in k[t]/(V') does reduce the poles of the integrand.

Theorem 1. For any solution (By,...,By) of (2) in k[t]/(V),
" Byw;\’ r, Ciw;
(3) f — (Ez_l ) + Z =1

iz SG,UV™
where

Gy A, . SGL,UV'B; &
(4) Ci= == = SGLUB} +m 7—256* Uf;iB; € k[L].

It remains to study under which circumstances the system (2) has a solution in k[t]/(V): we

show that, whenever the system has no solution, we can extend the module k[tjwy + - - -+ k[t]w,.
Let

(5) Sz — SU‘/m-H (ﬂ

‘/ m

!
), for 1<i<n.

Theorem 2. Suppose that m > 0 and that {5S1,...,9,} as given by (5) are linearly independent
over k(t), and let Ty, ..., T, € k[T] be not all zero and such that Y-, T;S; = 0. Then,

SU &
=1

Furthermore, if gcd(Ty,...,T,) =1, then w & Oy, = k[tjwy + - - - k[t]w,,.

Theorem 3. Suppose that m > 0 and that {5S1,...,5,} as given by (5) are linearly independent
over k(t), and let Q,Ty,...,T, € k[t] be such that

=1 =1

Then,

SU(V/ ged( V Q))
gcd(V,Q ETZ wi € 0.
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Furthermore, if gcd(Q,Ty,...,T,) = 1 and (2) has no solution in k[t]/(V), then w ¢ O, =
E[t]wy + - - -+ k[t]w,.

The lazy reduction algorithm follows from Theorems 1, 2, and 3: if m = 0, then D = SU;, where
S is special and U; is normal. Otherwise, we solve the system

=1 1=1

for hq,...,h, € k(t). Any solution in k(t¢) whose denominators are coprime with V' is a solution
of (2) in k[t]/(V). In that case, (3) reduces integrating f to a new integrand whose denominator
divides SG,,UV™. If the above equation has no solution in k(¢) whose denominators are coprime
with V, then either the S;’s are linearly dependent over k(%) or there is a solution whose denominator
has nontrivial common factor with V', so either Theorem 2 or 3 produces w € O such that w ¢ O,,,
and the algorithm of Section 2 produces a new basis by, ..., b, for the submodule k[t]w + O, of O.
We transform that basis into an I-basis, express f in the new basis and continue the reduction
process. In both of the above cases, the integrand after the reduction step has an expression
whose denominator has strictly less zeroes of multiplicity m + 1 than before (it has none when the
system has a solution), so after finitely many reduction steps, we have produced a new basis made
of integral elements, and a new integrand, whose denominator with respect to that basis is the
product of a special and a normal polynomial. This is the same result as obtained by the Hermite
reduction (with an integral basis) as presented in [1, 2, 7].

Conclusion

We have presented a lazy Hermite reduction for which each reduction step uses only rational
operations and performs Gaussian or Hermitian elimination on matrices of size n by n or n+ 1 by
n, while computing an integral basis requires Hermitian elimination on matrices of sizes n? by n, so
the lazy reduction is expected to cost O(n?) operations in k() as compared to O(n*) for computing
rationally an integral basis. In the case of pure algebraic functions, this yields a complete algorithm
for determining whether the integral of an algebraic function is itself an algebraic function. The
natural direction in which to extend this work is to ask whether the complete algebraic integration
algorithm can be performed rationally without computing an integral basis. Another interesting
direction would be to generalize the Hermite reduction (and its lazy variant) to solve equations
of the form y' + fy = g in a finitely generated algebraic extension of k(t), as was done for the
transcendental case in [5]. This could yield a better algorithm than the reduction to a linear
differential system in k() [3].
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