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1. Introduction

The classical railroad cars switching problem [12] (viz. to reorder cars in a given order with the
help of a single garage-track) is here revisited and generalised in terms of permutations and trees.
Permutations which are sortable by one (or more than one) stack have been studied by West [14]
and some generating functions have been found [15]. By factorising permutations (following and
generalising an idea of Zeilberger’s), Mireille Bousquet-Mélou obtained functional equations for
one-stack sortable, two-stack sortable, sorted permutations, sorted and sortable permutations. She
shows ¢g-analogues arise in counting inversions. Most of these functional equations involve divided
differences. The quadratic method allows to solve some of them while the other ones remain quite
mysterious. She also gives an algorithm which decides if a permutation is sorted.

2. Sorting Procedure

In his Ph.D. thesis [14], Julian West studied a procedure II that permutes the letters of a word o
consisting of distinct letters in the alphabet {1,2,3,...}. The procedure uses a stack s and works
as follows:

T:i=¢€
s:i=¢
while 0 # ¢ do
f :=Firstletter(o)
if s = c or f < Top(s)

then
s:=sf
o:=f"lo
else
s := s Top(s)~!
T := 7 Top(s)
end
T:!=TS§
return 7

In this procedure, € is the empty word, 3 is the mirror of the word s and the inverse b=! of a
letter b of the alphabet {1,2,3,...} is a new letter with the property b46=! = 6=1b = ¢. The output
word 7 has n letters, and we define it to be II(¢), the word obtained by sorting o through a stack.
This procedure extends a procedure described by Knuth [12, p. 238].

9



10

West observed that the map II can alternatively be described recursively by
M(olme®) = (e (c®)m

where m is the largest letter of the word 0 = o'mo’. With at most n — 1 iterations, ¢ is an

increasing word, i.e. Il sorts the letters of o.

~— 2351674 =0 23 ~— 01674 23 =— 674 | M(o) = 2315647

1
5

Ficure 1. The sorting algorithm applied to o = 2351674.

Let S, be the set of permutations of {1,2,...,n}. We represent the action of Il on S, by a
sorting tree: the nodes of this tree are the elements of S,,, and an edge connects o to Il(o) for all

cesS,.
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Ficure 2. The sorting trees for Sz and Sy.
We can visualise on this tree the four classes of permutations we will consider in this paper.

One-stack sortable permutations. These permutations occur in the last two columns of the sorting
tree. Knuth [12] proved that the number of such permutations is (2:)/(71 + 1). They are exactly
the permutations avoiding the pattern 231: there exists no triple (¢,j,k) with 1 <i < j<k <n
such that o(k) < (2) < o(j).

Two-stack sortable permutations. They occur in the last three columns of the sorting tree. Their
generating function )’ ¢,2" satisfies
2 F? 4 2(2432)F? + (1 — 14z + 32) P + 2> + 11z — 1 = 0.
West conjectured that
2(3n)!
(2n+ Dl(n+ 1)

Cp =



11

This was proved by Zeilberger [15], who found the previous equation and then used the Lagrange
inversion formula.

Sorted permutations. These are those permutations which belong to II(S,). Induction on the
length of permutations shows that any suffix of a sorted permutation is a sorted word. Sorted
permutations cannot be described in terms of forbidden patterns: in fact any pattern occurs as a
factor in some sorted permutation. We shall give a functional equation satisfied by their generating
function.

Sorted and (one-stack) sortable permutations. Their generating function satisfies

PP+ 22 (34 42)F? + 2(3 — 292 4+ 622) F? + (1 — Tz + 2922 + 42°)F — (1 — 2)? = 0.

3. Permutations and Trees

There is a classical bijection between permutations and binary search trees: one gets a permuta-
tion from a labelled tree by reading it with a “lower reading” (you start at the root, and recursively,
you read the subtrees, the left one at first, and when you have visited all the left children, you add
the label of the current node to a list, the final list is the permutation associated to the tree), on
the other hand one gets a tree from a permutation o = o%mo’ by creating recursively the tree
with root m and a left subtree associated to o and a right subtree associated to o%.

We will now show on an example an algorithm that decides whether a permutation is sorted and,
if it is indeed sorted, gives the pre-image. Beginning with 7 = 6.3.11.1.4.5.2.7.9.8.10.12 € &1, one
splits it after each descent: 6|3.11]1.4.5/2.7.9(8.10.12 then one reads it from right to left, and for
each factor one creates the associated tree where the root is the maximum and each node has only
a right child. One gets then fives trees (12,10,8), (9,7,2), (5,4,1), (11,3) and (6). And finally one
tries to create the associated binary search tree, which is possible if and only if 7 is sorted. What
is more, by noting o the word given by a “lower reading” of the final tree, we get 7 = II(o). With
our example, we have 7 = 11(6.11.3.12.9.5.4.1.7.2.10.8) is sorted.

4. Notations

The number of 231 patterns in a permutation o is the number of pairs (¢, k) with ¢ < k such
that there exists j € [i,k] with o(k) < o(i) < o(j). Note that the number of 231 patterns in
a permutation o, denoted below INV(c), is the number of inversions of II(¢). For instance, the
permutation o of Fig. 1 has four 231 patterns (corresponding to the pairs of letters (2,1), (3,1),
(5,4) and (6,4)) and 1I(o) has four inversions (given by the same pairs of letters). For o € S,,, we
define z(o) by the largest £ such that n occurs before n — 1 and n — 1 occurs before n — 2 and - - -
and n — (¢ —2) occurs before n— (£ —1)}. For instance, 2(519268374) = 3. For m,n > 0, we define
the sets Sy, , and gmm by

Spmn =140 € Spgn 1 2(0) > n} and Smpn = {0 € Spyn 1 2(0) = n}.

Let 0 € Sy and o = olmo®, we note m’ the largest letter of of, so we have the factorisation

c = Am'B. 1t is this factorisation which allowed the author to find equations verified by the
generating functions. We will use the usual notations [n] = 14+ ¢+ ---+ ¢*7! = 11__qqn
[n]! = [1][2] - - -[n]. Let C be a set of permutations. By the ordinary (resp. exponential) generating
function of C we mean the series

and

™
C(ﬂfay): E Cmmxmyn’ resp. C’(ac,y): E Cmmﬁyn’

m,n>0 m,n>0
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where ¢, ,, is the number of permutations ¢ of C of length m + n such that z(¢) > n. The ordinary
(resp. Fulerian) INV-generating function of C is

xm

Clz,y;9)= Y cmmz™y",  resp. Clu,y;¢)= Y TV

m,n>0 m,n>0

where ¢, , = 206605%” ¢™V(@) The definition for the inv-generating function of C is similar.

5. Functional Equations

Proposition 1. The Fulerian INV -generating function A(z,y;q) for general permutations is com-
pletely characterised by the initial condition A(0,y;q) = 1/(1 — y) and the equation

Alz,y59) — A(2q, 95 4 A(z,y59) — Az, 054
( )= A )=[1+yA(wq,y;q)] ( )= Az.00)
z(1l—q) Yy
In the limit ¢ — 1, we find, for the series A(x,y), the initial condition A(0,y) = 1/(1—y) and the
equation

Ty = [y, AL A0,

Proposition 2. The ordinary generating function B(x,y) for one-stack sortable permutations is
completely characterised by the equation

1 x B(z — B(z,0
Blz.y) = —— 4 DLy = PE0)
-y 1l-y Y
Proposition 3. The ordinary INV-generating function C(xz,y) for two-stack sortable permutations
is completely characterised by the equation

1 Clz,y;9) — C(,0;9
Cle,yiq) = ;— T2l +yC(2q, 439)] ( et )
- Y )
Proposition 4. The Fulerian inv-generating function D(z,y;q) for sorted permutations is com-
pletely characterised by the initial condition D(0,y;q) = 1/(1 — y) and the equation
D(z,y;¢) = D(2q,9;9) D(z,y;¢) = D(2,0;9)
=1 -y [1+yD(zq,y;q :
e (1= ) [ +yD(a0,4: ) :
In the limit ¢ — 1, we obtain for the exponential generating function D(xz,y) the initial condition
D(0,y) =1/(1 —y) and the equation
oD D(z,y)— D(z,0
5, (&Y = (1 -y L +yD(z,y)] (z.9) = D(=,0)
z )
Proposition 5. The ordinary inv-generating function E(x,y;q) for sorted and sortable permuta-
tions is completely characterised by the equation

1 E(z,y;9)— E(z,0;¢q
E(%y;q)zﬂ+x(1—y)[1+yE(wq,y;q)] ( )y ( )

Remarks. The ordinary length generating function B(z,0) for one-stack sortable permutations can
be solved by the kernel method. The equations of Propositions 3 (two-stack sortable permutations)
and 5 (sorted and sortable permutations) can be solved when ¢ = 1 via the so-called gquadratic
method, which is due to Brown [6, section 2.9.1]. There is no known g¢-analogue of this method!
On the other hand, the equations for the general permutations and for sorted permutations can be
“solved” as we will see in the next section.
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6. Solving Equations with a ¢-Derivative

Both equations are of the following form:

(1) () = clw) 1+ yF (e, ) DD,

where ¢(y) = 1 for general permutations and ¢(y) = 1 — y for sorted permutations.
One uses the two following results in order to “solve” these equations.

Lemma 1 (Bernoulli linearisation). Let F(z,y) € R(y)[[z]] be defined by the initial condition
F(0,y) = 1/(1 —y) and Eq. (1), with ¢c(y) = 1 or ¢(y) = 1 —y. Let G(z,y) be the following
series of R(y)[[z]]:

1

(W) [+ yF(z,y)]

G(z,y) = .
Then G(0,y) = (1 —y)/c(y) and
90
Y or
Most importantly, G(z,y) has polynomial coefficients in y, i.e., G(z,y) € R[y][[=]].

(z,y) —c(y) 1+ yF(2,0)]G(z,y) + 1 =0.

Lemma 2 (Laplace transform). Let h(z,y) € Ry][[z]] be a formal series in x with polynomial
coefficients in y. Let G(z,y) be the series of R(y)[[z]] defined by an initial condition G(0,y) € R(y)
and the differential equation:

oG
yd_x(x’ y) - [1 + yh('rv y)]G(x7 y) +1=0.
Let '
T .TZ
H(z,y) = exp [—/ h(u,y)dU] = Hi(y)~-
0 i>0 v

Then the coefficients of G(x,y) are polynomials in y if and only if G(0,y) € Rly] and

> Hi(y)y' = G(0,y).

>0
In other words, the Laplace transform of H(z,y) with respect to x is exactly G(0,y) when evaluated
at x = y:

1 o0
. / G_U/yH(’Uﬂ y)du = G(07 y)
Y Jo
For general permutations, with ¢(y) = 1, one gets
1
F =A = —
(2,y) = Ale,y) = T—— ,

For sorted permutations, with ¢(y) = 1 — y, the series F(z,y) is the exponential generating func-
tion D(z,y) for sorted permutations. The series G(z,y) = 1/[(1 — y)(1+ yD(z,y))] satisfies (1)
with A(z,y) = (1—-y)D(z,0)— 1. Moreover, G(0,y) = 1. With the notations of Lemma 2, we have:

H(z,y) = exp(z + (y — 1)D(z))
where

D(z) = /0 D(u,0)du.

Lemma 2 gives the following result.
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Proposition 6. Let
xm—l—l

D(x) =) dmor——

ot (m+1)!

where d,, o is the number of sorted permutations of length m. Then the series D(x) is completely
characterised by the following equation:

17y e 0=V exp [(y — 1)D(u)]du =1 — y.
) 0
In other words, let K (z,y) = exp [(y ~ )D(@)] = Siso Ki(y)e' i, and et K (i, ) = Tz Ki(y)e’
be its Laplace transform with respect to x. Then B

. . 1
K (ﬂ—y,y) =1-y, or, equivalently K (u, 1 _qu u) =1 e
The first coeflicients of the series are 1,1,2,5,17,68,326,1780,11033,76028,578290,4803696. One
does not know if this series is algebraic, D-finite, ... Thus, the generating function for sorted

permutations remains mysterious. Mireille Bousquet-Mélou will give a solving method for the full
g-analogue equations in a for coming paper.
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