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1. Introduction

Algebraicity of generating functions (gf’s) is of interest in combinatorial analysis as it is a sure
sign of strong structural properties. For instance, any (unambiguous) context-free model leads to
algebraic generating functions; in particular generating functions of simple families of trees and
random walks (defined by a finite set of node degrees or jumps) are algebraic. In another context,
the algebraic character of the gf’s associated with 2-dimensional directed animals in percolation
theory points to a wealth of puzzling combinatorial bijections; see [7] for a specific illustration.

Conversely, a transcendence result for the gf of a combinatorial class C means a sort of “structural
complexity lower bound” on C. For instance, elements of C cannot be encoded by an unambiguous
context-free grammar. Accordingly, if C already admits context-free descriptions, all such descrip-
tions must be inherently ambiguous.

Methods for establishing the transcendence of generating functions fall broadly into two cate-
gories.

— Arithmetic methods are based on number-theoretic properties of coefficients. The most famous
criterion in this range is Eisenstein’s criterion: If a series of Q[[z]] is algebraic, then the
denominators of its coefficients contain only finitely many primes. For instance, f(z) = exp(z)
is transcendental “because” its coefficients f, = % have denominators that contain infinitely
many primes (by Euclid’s theorem!).

— Analytic methods are based on the presence of a transcendental element in a local behaviour,
usually taken at a singular point. In this perspective, f(z) = exp(z) is transcendental “be-
cause” its growth is too fast at infinity, a fact incompatible with the fact that an algebraic
function is locally described by a Puiseux series (i.e., a series involving fractional powers).

The analytic approach is reviewed in [6]. The talk focuses on the arithmetic method, and more
specifically on the following powerful approach [2, 3, 4, 10].

Principle . If f(z) = >, f.2" hasinteger coefficients and is algebraic over Q(z), then its reduction

(f(z) mod p) := > (f, mod p)z" is algebraic over F,(z).

Principle . For a series g(2) = ) ¢,,2" over a finite field F,, the following three properties are
equivalent:
1) the correspondence n — ¢, is computable a finite automaton that inputs the base-
(7) tt pond G i putable by a finit t ton that inputs the base-p
representation of n (“the g, are automatic”);
12) the infinite word (go, g1, - - . ) is generated by a regular (length homogeneous) substitution;
;1) the infinit d is g ted b gular (length h g bstituti
(i17) g(z) is algebraic over F,(z).
31



32

This is the classical “Christol-Kamae-Mendés France-Rauzy Theorem” [4, 5], the equivalence
between (7) and (i) being due to Cobham in 1972. For instance, the Catalan gf,

o= Y

has a reduction modulo 2

=24+ 224222 1524 1 142° 44225 113227 + 42028 1+ ...

g(2)=z+ 22+ 224

where the coefficient g, is 1 exactly when n = 27. Thus the coefficient sequence is computable by a
finite automaton from the binary representation of the index n. It is also generated starting from
the letter a by the regular substitution

a— al, 1+~ 10, 0 — 00.

2. Primitive words

An example originally due to Petersen serves to illustrate nicely the methods just introduced.
Say that a word over some alphabet is primitive if it is not a “power”, that is, the repetition of
a shorter pattern. Thus abbab is primitive while abbabbabb is not. Let m > 2 be the alphabet
cardinality, W(z) = (1 —mz)~! the gf of all words, and P(z) the gf of primitive words. Then, since
each word has a “root”, one has

W(z) = P(2) + P(z*) + P(%) + -,

so that, with p(n) the Moebius function,

P2y = Y Wzt o= p(dym e,

a>1 d|n
In particular, the reduction modulo m yields

# =u(n)+ A-m=p(n) mod m.
Thus, the problem is reduced to showing that p(n) is the coefficient sequence of a transcendental
series.

Now, by a theorem a Cobham, if a sequence has an algebraic gf over a finite field, and if it assumes
some fixed value with a limit density §, then § is a rational number. (Think of the characterization
by finite automata.) But, here, u(n) = 1 whenever n is square-free, an event whose density is 7T6—2.
The transcendence of >°  p(n)z" then follows from the irrationality of .

Reduction modulo m thus provides a proof of the fact that the language of all primitive words
cannot be an unambiguous context free language.

In the analytic perspective, transcendence results from the fact that P(z) has infinitely many
poles inside the unit circle. Such poles, at points m=1/" exp(%ﬂ), arise from W (z) and the Moebius
inversion formula for P(z).

3. Stanley’s conjecture

In his fundamental paper of 1980 on D-finite series, Stanley [9] conjectured that the binomial
series

Bi(z)=Y (2:)tz”



33

is transcendental for any integers ¢ > 2. Of course, we have By(z) = 1/4/1 — 4z. In the case of even
t, B;is clearly transcendental given the presence of logarithmic elements induced by the asymptotic

form of coefficients,
2
2n\ % 4%
n ns’

In addition Bj is also known to be an elliptic integral. The case of odd ¢ is harder. An analytic
proof was suggested by Flajolet [6] in 1987 and an algebraic proof was given by Woodcock and
Sharif [10] in 1989.

The proof of [10] consists in reducing first B;(z) modulo a prime p. The resulting series is
algebraic, since a theorem of Furstenberg states that algebraic functions over finite fields are closed
under Hadamard (termwise) products. (This property is also clear from the characterization by
finite automata.) However, by means of arguments from algebraic number theory, Woodcock and
Sharif are able to estimate the degree of (B;(z) mod p) over F,(z) and deduce that there exists an
infinity of special prime values of p for which this degree grows without bound. This in turn implies
the transcendence of By(z).

In contrast, from the analytic standpoint, it is the examination of the Puiseux expansion of B;(z)
near its singularity ¢ = 47! that leads to the transcendence result via the arithmetic transcendence
of the number 7.

4. Miscellaneous examples

There are a great many cases where reduction modulo a prime leads to transcendence results for
generating functions. Here are a few examples.
In [6], the language {a"bvia™ vy} was shown to be inherently ambiguous through transcendence of

2n

z
S(Z):z:1—27;—|—z”+17

n>1

since poles accumulate near 1/2. Alternatively, simple manipulations show that, modulo 2, the
transcendence of S(z) is equivalent to the transcendence of the divisor series

D)=+ in =3 d(n)="

n>1 n>1

The latter form is transcendental over Fy(z) since, upon reduction modulo 2, it is the indicator
series of squares, and squares are known not to be automatic (Minsky).

A similar process applies to the Goldstine language whose gf involves the theta function O(z) =
350 2" H1/2and to the partition series P(z) = [[(1 — 2")~! whose logarithmic derivative is
closely related to divisor functions.

An amusing example due to Allouche, Betrema, and Shallit is the “Bourbaki definition of inte-
gers”

0, {0}, {0,{03}, {0,{0},{0,{0}}}, ...,

which, upon binary encoding, leads to the nonregular substitution [@ — aab, b — b]. The
associated infinite word (interpret @ as 0, b as 1) has a gf that is transcendental, being related to
the series

S2F-1

Daz) =) PRI

k>2
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that also shows up in a formal language example of [6].

5. Lucas sequences

The talk concludes with a description of some recent results of Allouche, Gouyou-Beauchamps,

and Skordev [1]. Lucas showed that
()= ) ()
DR mod p7
n o (3 D)
where the m;, n; are the digits of m,n in base p for prime p. More generally, following [8], define
a p-Lucas sequence (p prime) by the property

Upptj = Gpa; mod p.

= () ()

k>0

For instance, the Apéry numbers

are p-Lucas. Then, Allouche et alii characterize the strong property for a sequence to be simul-
taneously algebraic (automatic) over Q and p-Lucas for all large enough p. In essence, the only
possibility for such a sequence is to be, up to normalization, the sequence of values of the Legendre
polynomials at some rational point. In other words, the corresponding gf F(z) is of the form

1
F(z)= ——
V1+az4+ bz

A particular case is the central binomial coefficient (2:) From Lucas’ property and this character-

ization, a new proof of Stanley’s conjecture can be deduced. There are also interesting extensions

to Hadamard products of series involving (271”), (3:), etc.
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