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1. The Problem

Consider the linear ODE 4™ (z)+a,_1(2)y" =V (2)+- - 4ao(z)y(z) = 0, where the coefficients a;
are rational functions of £ = C'(z) for an algebraic closure C' of the rational number field Q. Solving
this equation is an easier task when the corresponding linear differential operator in 9 = d/dz,

L=0"4a,1(2)0" '+ 4 ap(z),
admits a factorization I = LyL; where the product denotes composition. The Leibniz rule
d-ay=(ay) =dy+ay =(@d+d)-y (ack)

defines a degree on the non-commutative ring A = k[d], which makes it left and right Euclidean.
Consider the operator

1 3
L=0%--0°+ 0% —x.
1 T
It can be proved to be irreducible in A, i.e., it admits no factorization L,Lq in A. However, L

factorizes over the extension ring k(+/z)[d]:
L= (02204 2 —va) (0 -va) = (02— Lo+ 2+ yz) (* + va).
z 42 z 42

Note that since /z and —+/z are algebraically and differentially indiscernable, the conjugates of
a right factor of I are other right factors of L. In the example above, L is the least common left
multiple of both conjugate right factors.

More generally, an operator I € A is called absolutely reducible when there exists an algebraic
extension ke, of k such that L is reducible in Aoy = kext[0] (for a suitable extension of the action
of 0 on kext). For an absolutely reducible operator L with a right factor L; € Ay, let L be the
least common left multiple of the algebraic conjugates of L. As a simple result of differential
Galois theory, L is stable under the action of the differential Galois group of the extension Ay
over A (to be defined in the next section). This entails that I € A. Since L divides L, we have
that L is irreducible but absolutely reducible in A if and only if L is the least common left multiple
of the conjugates of a right factor Ly € Agys.

The example above motivates the following problems, sorted by increasing complexity:

1. find an algorithm to decide absolute reducibility;
2. find an algorithm to compute a factorization on an algebraic extension;
3. find an algorithm to compute a factorization on an algebraic extension with absolutely irre-

ducible factors.
1



The algorithms to solve these problems, reduce to solving ODE’s for solutions in special classes. A
solution y such that y € k is called a rational solution, while a solution y such that y'/y € k is called
an exponential solution! and a solution y such that y’/y is algebraic over k is called a Liouvillian
solution. An early study on this topic dates back to Liouville [6, 7]. The first algorithm to solve
for rational solutions was developed in [1]. It relies on the resolution for polynomial solutions,
for which an optimized algorithm is presented in [2]. Next, algorithms for factorization as well
as algorithms to solve for Liouvillian solutions rely on the resolution for rational or exponential
solutions. Algorithms for factorization are given in [3, 4, 9, 12]. The first algorithm to solve for
Liouvillian solutions of second-order ODE’s is due to Kovacic [5] and was later elaborated in [11],
again in the second-order case. A prototypical algorithm for higher-order equations is to be found
in [8] and was highly improved on in [10] in the third order case.

In the remainder of this summary, we comment on an algorithm to solve the second problem.

2. Differential Galois Theory

In the suitable analytical framework, the solution space V' of the equation L-y = 01is the C'-vector
space generated by n linearly independent solutions y;. However, these solutions satisfy algebraic
differential relations
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Pi <’y173/17---73/£n )7---7%73/;7---7 7(;2 1)> =0

for polynomials P; in n? variables and with coefficients in k. As an example, any solution y; of the

equation y” + y = 0 satisfies an algebraic equation y? + y{? = ¢ € C. For a given L, we would like
to describe the ideal J generated by all algebraic differential relations. A description is obtained
by differential Galois theory.

For a differential field extension K of k, the group of automorphisms ¢ of K that induce the
identity on k and such that o(f') = o(f)' for f € K is called the differential Galois group of K

over k and is denoted Gal(K/k). Let K be k (yl, .. .,y§n_1), R TR .,yfzn_l)), i.e., the smallest

differential field extension of k& which contains the y;’s and does not extend the field of constants C.
This field is called the Picard-Vessiot extension of L. The group Gal(K /k) is called the differential
Galois group of L and denoted Galg(L). A computational representation of G is obtained as follows.
Assume y to satisfy L -y = 0, then for any automorphism o € G, L -o(y) = o(L -y) = 0. In other
words, each automorphism moves a solution of L to another solution. Consequently, o(y) is a
linear C-combination of the y;’s with coeflicients that are independent from y. This yields a matrix
representation of G. Thus G is linear algebraic and the ideal J is stable under the action of .

We now proceed to introduce a lemma which is crucial to the algorithm discussed in the next
section. Assume that L admits a right factor L; with solution space V3 C V. For any v; € V; and
any automorphism o € G, Ly -o(vy) = (L1 - v1) = 0, so that V; is stable under G. We want to
prove a converse property.

For an r-tuple (vq,...,v,) € K", the Wronskian Wr(vy,...,v,) is classically defined as the ma-
(j)}

trix {vz . The corresponding determinant induces an application from K" to K. This application

is an alternate r-linear form and satisfies
o(det(Wr(vy,...,v,))) = det(Wr(o(v1),...,0(v)))

for any o € G. Below, we more intrinsically use r-exterior products, i.e., formal alternate r-linear
symbols vy A - -+ A v, that satisfy o(vy A---Awv,) = 0o(v1) A---Ao(v,) for any o € G.

'Such a solution is also frequently referred to as a hyperezponential solution.
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Let us assume V; to be a 2-dimensional C-vector subspace of V' with basis (fi, f2) and stable
under the action of G. More specifically, for each o € GG there exist ng) € C'\ {0} such that

o(fi) = i+ el fo
Then in the exterior power A%(V}) where fi A fi = fa A fo =0,
o(fihfa)=0(fi)No(f2) = (craca2 — c12c21)(f1 A f2)-

More generally, assume that Vj is a C-subspace of V stable under G and with dimension dim V; =
r < n =dim V. Then, the exterior r-power A\"(V) is a 1-dimensional vector space with basis w =
fiN---A f.. For each o0 € G, there exists a non-zero ¢, € C such that o(w) = c,w. In fact,
¢, = det o when o is viewed as a C-linear automorphism of V;. Now, for y € V, write

I1-y—= det(wr(yvflv"'vfr))
VYT et (Wi(fr, 0 1)

This makes Ly a linear operator of order r. For any ¢ € G,

o o(det(Wr(y, f1,..., fr)))  coo(det(Wr(y, fi,...,fr)) .
o(lr-y) = (@t Wi(frr o ) coo(det(We(f,. o f)) L1

The coefficients of L are therefore left fixed by all elements of G, and L € k[D].

Lemma 1. An operator L with solution space V' admits a right factor Ly such that the solution
space V1 of Ly is a subspace of V if and only if there exists a non-zero proper subspace of V which
1s stable under G.

3. The Beke-Bronstein Algorithm

Wronskians relate the solutions of an ODE to its coeflicients. In particular, the Wronskian w =
det(Wr(y1,...,y,)) = det [Y, Y’ .. .,Y(”_l)] where Y is the column vector of the y;’s satisfies

n—1
w' =Y det [Y, YUy )y i) .,Y(”_l)} + det [Y, . .,Y(”_Q),Y(”)}
=1

n—1
=— Z a;(z)det {Y, . .,Y(”_Q),Y(i)} = —ay,_1(x)det {Y, Y',.. .,Y(”_l)} = —ay_1()w.
=0

In short w’' 4 a,,_1(z)w = 0 (Liouville relation); the other coefficients of L satisfy similar relations.
The algorithm developed and implemented by Bronstein after Beke’s work and described in [4]
makes use of Wronskians in the following way. To obtain a right factor of the operator L:

1. solve L -y = 0 for exponential solutions; if solutions are found, they yield first-order right
factors of L;

2. similarly, find first-order left-hand factors by the method of adjoint operators [4]; if solutions
are found, they yield right factors of L of order n — 1;

3. if no solution was found, look for right factors of order r (2 < r < n — 2) as follows:
(a) build an equation whose solution space is spanned by all Wronskians of order r;
(b) solve for exponential solutions;
(c) test which solutions are Wronskians, i.e., pure exterior products, and obtain a right factor.

As a comparison, Singer’s method, which was implemented by Van Hoeij, relies on solving for
rational solutions only.



4. An Example

Again, consider the operator L = 9* — i(’??’ + 43732 — z. Both first steps of the algorithm above

fail, so that the only possible factorizations are of the form L = LyLq with factors of order 2.
Write w = y1 95 — y1y2 for any two solutions of L. By computing its first derivatives, reducing them

by L on the basis <y¥)y£j )) . , and looking for linear dependencies by Gaussian elimination,
7=,
we obtain that w is annihilated by
5 21 69 8z° 4 15
P=0"- 0"+ —0°- —0°+ ——0.
2z + 422 83 + 2z4

The only exponential solutions are the constants A € C'. This entails that L; = * — Ad + r(z) for
an algebraic function r. By identification, one finds

1 A 3
— 92 _ )¢ 2_ 242 .
Ly =0 +(/\ m)0+(/\ x+4x2 r(.r)),
where 7(z) = ﬁ (2/\2302 — Az £ VA 24 — 8323 + 130222 — 152 + 16305). Realizing that A = 0,
we get 7(z) = £4/z and the factorizations of the first section.
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