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1. Introduction

A complete physical map of the DNA of an organism consists of ordered overlapping fragments
spanning the entire genome. A large number of fragments, called clones, are chosen at random
from a library in which the entire genome is represented. The anchoring approach, efficient for
large clones and then for very large genomes, uses an additional random genomic library of anchors
and is based on the anchor-content of the clones. These anchors consist of any short sequence
of DNA that occurs exactly once in the genome. Thus, clones containing an anchor in common
overlap. Clones that overlap are then assembled into islands which cover some regions of the
genome.

To plan a physical mapping project, it is therefore important to study, for instance, the proportion
of the genome covered by islands, the number and the length of islands, with respect to the number
of clones and anchors considered. To study the statistical properties of the islands, we must
model the clones and anchors processes. This problem is typically part of the theory of coverage
processes [6]. The aim of this paper is to provide a mathematical analysis of physical mapping by
anchoring random clones, in a general model.

2. Notation and preliminary results

We consider the genome linearly as a discrete sequence of bases of length G. We assume that
clones have independent and identically distributed lengths L, with mean £ L. We define g = G/EL.
Since the anchor length is very small compared to the clone length, the anchors will be considered
to be points. We assume that right ends of clones occur on the real line according to a non-
homogeneous Poisson process of rate a(t), and we label them {C;,7 € Z} such that --- < C_; <
Co <0< Cp < <COngy <9< Cn4r <5 N(t) = N((0,¢]) denotes the counting
process of clones and represents the number of clones ending in (0, ¢]. Similarly, the anchors occur
according to a non-homogeneous Poisson process of rate A({) and are labelled {A;,7 € Z} such
that -+ < A} <Ag <0< Ay < < Apyg) £ 9 < App(g)41 < -+ 05 M(t) = M((0,1]) denotes the
counting process of anchors and represents the number of anchors in (0, ¢]. We assume the process
of anchors and the process of clones are independent, and the rates @ and A are positive functions
such that their integrals are finite on bounded sets, but are not finite on unbounded sets.

Proposition 1. The probability J(t; ) that the points t and t + x (z > 0) are not covered by a
common clone is

J(t;2) = exp (_ /x Calt4 u)]—"(u)du) .
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3. Main results

We introduce the following terminology: a clone containing an anchor is an anchored clone,
and the clones containing one or more common anchors are assembled into anchored islands An
anchored island can be composed of a unique anchored clone. A region between two anchored
islands is an ocean.

Several theorems give properties of unanchored clones, anchored islands and notably the singleton
anchored islands, composed of a unique anchored clone. The next theorem is about the proportion
of oceans, in other words the proportion of the genome not covered by anchored islands.

Theorem 1. The probability ro(t) that t is not covered by any anchored island is
[ J(tv)J(t — wyw) ( /H'“ )
ro(t) = M+ I\t —w)exp | — Mz)dz | dvdw.
= [ [ SETE R - e (< [ )

The mean proportion rq of the genome not covered by anchored islands is

- [t
g = — ro(t) dt.
0 7 /s 0

Under probabilistic assumptions that are satisfied for periodic rates a and A, the author states
the weak law of large numbers for the number of anchored islands and the number of anchored
clones. Moreover, the length of the anchored islands, the mean number of clones and the mean
number of anchors in an anchored island are derived. Notably, we get:

Theorem 2. (i) The process of anchors covered by clones is a Poisson process with rate given by
v(t) = MO = J(5;0));
(ii) the average number of anchors per anchored island ending in (0,g], denoted by H,, is such
that
_ IN)(1 = J(t;0))dt p,
7 00 w0 iy,
fo Oz(t)pl(t) di

where p1(t) is the probability that a clone ending at t is the rightmost clone of an anchored island.

as g — o0.

Whereas an ocean is a region not covered by anchored islands, an actual ocean is defined to be
a region not covered by clones.

Theorem 3. The probability ps(t; ) that an anchored island ending at t is followed by an actual
ocean of length at least x is
1 - ql(t)

t+x
ps(t;z) = J(t+ z;0 exp(—/ audu)
() = T+ a0)e (= [ aun) =2
where q1(t) is the probability that a clone ending at t contains no anchor.

4. Applications

The author presents numerical results for a genome of length G = 100,000 kb, 2300 clones
of fixed length I = 250 kb and 500 anchors, that corresponds approximately to the physical
mapping project of Arabidopsis thaliana genome [5]. The normalized genome length is g = 400,
and the mean number of clones and anchors in (0, g] are respectively EN = EN(g) = 2300 and
EM = EM(g) = 500.

We focus on four quantities, namely the mean number of unanchored clones, the mean number
of anchored islands, the average length of anchored islands and the mean proportion of the genome
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not covered by anchored islands. The first non-homogeneous model assumes each rate is piecewise
constant and can take two values. It means the genome is composed of alternating rich and poor
regions of clones, and of anchors. This is the hotspot model introduced by [4]. The second model
allows some sinusoidal fluctuations around the constant rates.

4.1. Hotspot model. These are the main trends. When the hotspots are in phase, the number of
unanchored clones decreases as the level of clone hotspot increases. As both of the hotspot levels
increase, the mean number of anchored islands and the mean length of an anchored island decrease,
leading to an increase of the mean proportion of the genome not covered by anchored islands.

When the hotspots are completely out of phase, the number of unanchored clones increases as
both of the hotspot levels increase. As the level of clone hotspot increases, the mean number
of anchored islands increases and then drops, whereas it decreases as the level of anchor hotspot
increases. The mean length of anchored islands decreases as the level of clone hotspot increases.
The mean proportion of the genome not covered by anchored islands increases as the levels of
hotspot increase, rather dramatically when the level of clone hotspot increases.

The most important effect is undeniably that the more the model departs from the stationary
model, the greater the mean proportion of genome not covered by anchored islands. Finally, the
simulation results given by [4] and the theoretical calculations are quite close.

4.2. Sinusoidal model. We consider the following rates
a(t) = ag + ay sin(ast), A(t) = Ao + Aqsin(Aqt).

The mean number of unanchored clones seems not to depend on «q and increases as Ay increases.
Increasing either oy or A; has the same effect on the average length of anchored islands and the
mean proportion of genome not covered by anchored islands: the length decreases whereas the
proportion increases. The stationary case, &; = A; = 0 minimizes the mean number of anchored
islands and the mean proportion of genome not covered by anchored islands and maximizes the
average length of anchored islands.

5. Conclusion

Undeniably, the inhomogeneity in the clone and anchor locations along the genome substantially
changes the predictions in a physical mapping project. Since the goal of a physical mapping project
(at least the first step) is to obtain few long anchored islands and a small proportion of genome
not covered by anchored islands, the previous applications clearly show that using homogeneous
Poisson processes for clones and anchors provides an overly optimistic assessment of the progress
of the mapping project. The difficulty in practice remains to model the inhomogeneity occurring
in the genome. The detection of regions rich or poor in restriction sites involved in the cloning
process, for instance, could be a first step in characterizing some hotspots. Since longer DNA
sequences are becoming available, modelling heterogeneity has become an important problem in
sequence analysis.
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