Wiener-Hopf Factorization: Probabilistic methods

Philippe Robert
Inria Rocquencourt

March 17, 1997

[summary by Jean-François Dantzer]

1. Introduction

We consider a discrete random walk on \mathbb{Z} , defined by

$$S_0 = 0$$
 and $S_n = \sum_{i=1}^n X_i, \quad n > 0,$

where $(X_i)_{i\geq 1}$ is an independent identically distributed (i.i.d.) sequence of random variables. We define two hitting times ν_+ and ν_- ,

$$\nu_+ = \inf\{k > 0/S_k > 0\}, \qquad \nu_- = \inf\{k > 0/S_k \le 0\},$$

with the convention $\inf(\emptyset) = +\infty$.

We also define M and L two variables indicating respectively the maximum of the random walk and the hit moments at which it is attained

$$M = \sup_{n \ge 0} \{S_n\}, \qquad L = \inf_{n \ge 0} \{S_n = M\}.$$

This talk presents the classical probabilistic methods to derive the join distributions of (ν_+, S_{ν_+}) , (ν_-, S_{ν_-}) and (M, L).

Applications of these results have been found in biology [3, 4] or in queueing theory [2]. For more details on this subject, see [1, 5].

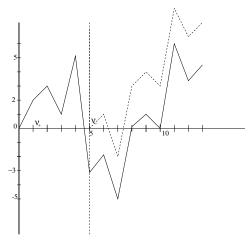


FIGURE 1. Random walks $(S_n)_{n\geq 0}$ and $(S_{n+\nu_-})_{n\geq 0}$ (in dotted line)

2. Distribution of (ν_+, S_{ν_+}) and (ν_-, S_{ν_-})

The distributions of the pairs (ν_+, S_{ν_+}) and (ν_-, S_{ν_-}) will be expressed through their generating functions, i.e., $E(u^{\nu_+}z^{S_{\nu_+}})$ and $E(u^{\nu_-}z^{S_{\nu_-}})$.

We consider three variables

$$\begin{split} \Psi_+(u,z) &= \frac{1}{1 - E(u^{\nu_+}z^{S_{\nu_+}})} \qquad \text{on} \qquad \{|u| < 1, |z| \le 1\}, \\ \Psi_-(u,z) &= \frac{1}{1 - E(u^{\nu_-}z^{S_{\nu_-}})} \qquad \text{on} \qquad \{|u| < 1, |z| \ge 1\}, \\ \Psi(u,z) &= \sum_{n \ge 0} E(u^nz^{S_n}) \qquad \text{on} \qquad \{|u| < 1, |z| = 1\}. \end{split}$$

The main result, the factorization of Wiener-Hopf described in the following proposition, gives an analytic characterization of Ψ_+ and Ψ_- .

Proposition 1. Ψ can be uniquely decomposed on $\{|z|=1\}$ as:

$$\Psi(u,z) = \Psi_+(u,z)\Psi_-(u,z),$$

where Ψ_+ and Ψ_- have the following properties:

- $-\Psi_{+}$ is analytic on $\{|z|<1\};$
- Ψ_+ and $1/\Psi_+$ are continuous and bounded on $\{|z| \leq 1\}$;
- $-\Psi_{+}(u,0)=1;$

and

- $-\Psi_{-}$ is analytic on $\{|z|>1\}$;
- Ψ_{-} and $1/\Psi_{-}$ are continuous and bounded on $\{|z| \geq 1\}$.

Proof. The proof is based on the following arguments:

- The function Ψ can be expressed with the distribution of X_1 , the sequence $(X_i)_{n\geq 1}$ is independent identically distributed, then $E(Z^{S_n}) = E(Z^{\sum_{i=1}^n X_i}) = E(Z^{X_1})^n$, thus

$$\Psi(u,z) = \sum_{n>0} u^n E(z^{X_1})^n = \frac{1}{1 - uE(z^{X_1})};$$

- $-(S_n)_{n\geq 0}$ and $(S_{n+\nu_-})_{n\geq 0}$ have same distribution, $(S_{n+\nu_-})_{n\geq 0}$ is the random walk beginning at the time ν^- ;
- The independence between the pair (ν_-, S_{ν_-}) and the sequence $(S_{n+\nu_-})_{n\geq 0}$;
- the same properties are also valid for $(S_{n+\nu_+})_{n>0}$.

3. Examples

The factorization is easy when Ψ has a finite number of poles and zeros. We consider two such examples.

3.1. Random walk \pm 1. We suppose $X_i = 1$ with probability p and $X_i = -1$ with probability (1 - p). In that case,

$$\Psi(u,z) = \frac{z}{-upz^2 + z - u(1-p)}$$

 Ψ has only two poles

$$\alpha_1(u) = \frac{1 - \sqrt{1 - 4u^2p(1 - p)}}{2up}, \qquad \alpha_2(u) = \frac{1 + \sqrt{1 - 4u^2p(1 - p)}}{2up},$$

with
$$0 \le \alpha_1(u) \le 1 \le \alpha_2(u)$$
.

The decomposition gives:

$$\Psi_+(u,z) = \frac{\alpha_2(u)}{\alpha_2(u)-z} \quad \text{and} \quad \Psi_-(u,z) = \frac{z}{\alpha_2(u)up(z-\alpha_1(u))}.$$

Here, we obtain the generating functions:

$$E(u^{\nu_+}z^{S_{\nu_+}}) = \frac{z}{\alpha_2(u)}, \qquad E(u^{\nu_-}z^{S_{\nu_-}}) = (1 - \alpha_2(u)up) + \frac{u(1-p)}{z}.$$

3.2. Random walk left bounded. We suppose $Pr(X_i < -1) = 0$.

$$\Psi(u,z) = \frac{1}{1 - uE(z^X)} = \frac{z}{z - uE(z^{X+1})}.$$

In that case, the factorization is easy because by Rouché's theorem the function $z \mapsto z - uE(z^{X+1})$ has one only root which belongs to $\{|z| < 1\}$, which we denote by $\alpha(u)$. One proves that $\alpha(u) \in [0, 1]$ and the decomposition of Ψ is the following:

$$\Psi_{+}(u,z) = \frac{z - \alpha(u)}{z - uE(z^{X+1})} \frac{u \operatorname{Pr}(X = -1)}{\alpha(u)}, \qquad \Psi_{-}(u,z) = \frac{z}{z - \alpha(u)} \frac{\alpha(u)}{\operatorname{Pr}(X = -1)},$$

and the generating functions are:

$$E(u^{\nu} - z^{S_{\nu}}) = 1 - \frac{u \Pr(X = -1)}{\alpha(u)} + \frac{u \Pr(X = -1)}{z},$$

$$\alpha(u) = z - uE(z^{X+1})$$

$$E(u^{\nu_+} z^{S_{\nu_+}}) = 1 - \frac{\alpha(u)}{u \Pr(X = -1)} + \frac{z - uE(z^{X+1})}{z - \alpha(u)}.$$

4. Distribution of the Maximum and its first Hitting time (M, L)

The distribution of the pair (M, L) is expressed through its generating function $E(x^L z^M)$.

Proposition 2.

$$E(x^L z^M) = \lim_{u \to 1} \frac{\Psi_+(ux, z)}{\Psi_+(u, 1)}.$$

Proof. We define the variables M_n and L_n , as

$$M_n = \max_{0 \le k \le n} S_k, \qquad L_n = \inf\{k/S_k = M_n\},$$

and the function H on $\{|u|<1,|x|<1,|z|<1\}$ as

$$H(u, x, z) = E(\sum_{n>0} u^n x^{L_n} z^{M_n}).$$

Using the same arguments as in proposition 1, it can be proved that:

$$H(u, x, z) = \frac{\Psi_{+}(ux, z)}{\Psi_{+}(u, 1)(1 - u)}.$$

We conclude applying

$$\lim_{u \to 1} (1 - u) H(u, x, z) = \lim_{u \to 1} (1 - u) E(\sum_{n \ge 0} u^n x^{L_n} z^{M_n}) = \lim_{n \to +\infty} E(x^{L_n} z^{M_n}) = E(x^L z^M).$$

For the case of the random walk of subsection 3.1, it gives for $p < \frac{1}{2}$:

$$E(x^L z^M) = \frac{\alpha_2(u)}{\alpha_2(u) - z} \frac{1 - 2p}{1 - p},$$

then

$$\Pr(L < +\infty, M < +\infty) = 1,$$

and the distribution of M is geometric with parameter $\frac{p}{1-r}$, for $p>\frac{1}{2}$:

$$E(x^L z^M) = 0$$
 and $Pr(L = M = +\infty) = 1$.

References

- [1] Feller (William). An introduction to probability theory and its applications. John Wiley & Sons, New York, 1971, 2nd edition, vol. II.
- [2] Iglehart (Donald L.). Extreme values in the GI/G/1 queue. Annals of Mathematical Statistics, vol. 43, n° 2, 1972, pp. 627–635.
- [3] Karlin (Samuel) and Altschul (Stephen F.). Methods for assessing the statistical significance of molecular sequences features by using general scoring schemes. *Proceedings of the National Academy of Sciences of the USA*, vol. 87, 1990, pp. 2264–2268.
- [4] Karlin (Samuel) and Dembo (Amir). Strong limit theorems of empirical functionals for large exedances of partial sums of i.i.d. variables. *Annals of Probability*, vol. 19, n° 4, 1991, pp. 1737–1755.
- [5] Spitzer (F.). Principles of Random Walk. Van Nostrand, 1964.