Graph colouring via the probabilistic method

Bruce Reed
Équipe Combinatoire CNRS
Université Pierre et Marie Curie, Paris, France

April 21, 1997
[summary by F. Morain and P. Robert]

1. Introduction

Colouring a graph with the minimum number of colours is a classical problem in graph theory and has many applications. For instance, think of a cellular phone network on which each vertex (phone) must use a different frequency with its neighbours. This problem is also known to be a difficult one (see for instance [3]).

The purpose of the talk is to present a naive algorithm for colouring a certain type of graphs and explain how to analyze it with elementary probabilistic tools that we will describe first.

2. Probabilistic tools

Throughout this section we denote by \(\text{Pr}(A) \) the probability of the event \(A \), \(E(X) \) the expected value of the random variable \(X \), and \(E(X/A_1, \ldots, A_n) \) the conditional expectation of \(X \) relative to the events \(A_1, \ldots, A_n \).

2.1. The Lovász Local lemma. Suppose that on some probability space \(\Omega \), there are \(n \) events \(A_1, \ldots, A_n \) that are undesirable. We wish to estimate if there is a positive probability to avoid any of them, i.e., if there is a positive lower bound for the quantity

\[
\Delta = \text{Pr}(\cap_{i=1}^n A_i^c),
\]

where \(A_i^c = \Omega - A_i \). If the events are independent, that is for any \(k \)-tuple \(1 \leq i_1 < \cdots < i_k \leq n \),

\[
\text{Pr}(\cap_{j=1}^k A_{i_j}) = \prod_{j=1}^k \text{Pr}(A_{i_j}),
\]

then

\[
\Delta = \prod_{i=1}^n (1 - \text{Pr}(A_i)).
\]

The problem is that in practice, the events are not always completely independent but weakly independent, in the sense that for each \(i \) there exists a subset \(V_i \subset \{1, \ldots, n\} \) such that \(A_i \) is independent of the events \(A_j, j \in V_i^c \). In other words, \(A_i \) is possibly dependent of \(A_j \) with \(j \) in the “neighbourhood” \(V_i \) of \(i \). If the cardinality of the \(V_i \)’s is small, one might expect an estimate close to the one we saw for the independent case. This is the conclusion of Lovács’s lemma, see [1].

Lemma 1. If the events are such that for all \(1 \leq i \leq n \),
1. \(\Pr(A_i) \leq p \),
2. \(A_i \) is independent of \((A_j)_{j \neq i} \),
3. \(|V_i| \leq d \),

and if \(p(d+1) < 1 \) then none of the events \(A_i, i = 1, \ldots, n \), occurs with positive probability.

2.2. Azuma’s Inequality. If \((Y_i) \) be a sequence of independent random variables with the same distribution on \(\{0, 1\} \), \(p = \Pr(Y_i = 1) \); the result of successive coin tossings is a good model for this sequence of random variables. It is well known that the time averages \(\frac{1}{n} \sum_{i=1}^{n} Y_i \) converges exponentially fast to \(p \) as \(n \to +\infty \). Rigourously, this is Chernoff’s bound

\[
\Pr \left(\left| \frac{1}{n} \sum_{i=1}^{n} Y_i - p \right| > a \right) < 2e^{-a^2/3np},
\]

it says basically that with high probability \([p/a^2] \) coin tossings are sufficient to get an estimate of \(p \) with an accuracy of the order of \(a \). This kind of result has been extended, for independent variables, to the case of arbitrary distributions, i.e., not only with values in \(\{0, 1\} \), as long as they have an exponential moment. This is a part of large deviations theory, see [2].

Another possible generalization is to consider the case where instead of the sum of independent variables, one looks at some functional \(X \) of some arbitrary random variables \(Y_1, \ldots, Y_n \) with values in \(\{0, 1\} \). Azuma’s inequality says that if the conditional exceptions of \(X \) with respect to \(Y_1, \ldots, Y_i \) do not jump sharply as \(i \) goes from 1 to \(n \), then \(X \) is concentrated around its average value, formally,

Proposition 1. If for each \(i \leq n \),

\[
\max_{y_1, \ldots, y_i+1 \in \{0,1\}} |E(X/Y_1 = y_1, \ldots, Y_i = y_i, Y_{i+1} = y_{i+1}) - E(X/Y_1 = y_1, \ldots, Y_i = y_i)| \leq c_i,
\]

then

\[
\Pr (|X - E(X)| > a) \leq 2e^{-\frac{a^2}{2\sum_{i=1}^{n} c_i^2}}.
\]

Azuma’s inequality is surprisingly sharp considering the weak hypotheses of the proposition. In the independent case, for \(X = \sum_{i=1}^{n} Y_i \), condition (1) is satisfied with \(c_i = 1 \), hence the inequality is in this case,

\[
\Pr \left(\left| \frac{1}{n} \sum_{i=1}^{n} Y_i - p \right| > a \right) < 2e^{-\frac{a^2}{3np}},
\]

which is very close to Chernoff’s bound.

3. Graph Colouring

We colour a graph \(G \) such that every pair of adjacent vertices receive different colours. The chromatic number of \(G \), noted \(\chi(G) \), is the minimum number of colours required to colour \(G \). It is easy to see that, if \(\Delta(G) \) denotes the maximal degree of \(G \), then \(\chi(G) \leq \Delta(G) + 1 \).

We can obtain good bounds for \(\chi(G) \) for certain types of graphs, as explained in [4]. For fixed \(\varepsilon > 0 \), we saw that a vertex \(v \) is \(\varepsilon \)-sparse if the subgraph induced by \(N_v \), the neighbourhood of \(v \), has at most \((1 - \varepsilon) \frac{\Delta(\Delta-1)}{2}\) edges. A graph is \(\varepsilon \)-sparse if each of its vertices is \(\varepsilon \)-sparse.

Theorem 1. For \(\Delta \) sufficiently large, if \(G \) has maximum degree \(\Delta \) and \(G \) is \(\varepsilon \)-sparse, then \(\chi(G) \leq (1 - \varepsilon/2e^6) \Delta \).
Let us indicate a rough proof of this theorem. In a first step, we construct a partial colouring \(C \) of \(G \) such for each vertex \(v \), the number of neighbours of \(v \) which are coloured exceeds the number of colours appearing on \(N_v \) by at least \(\frac{\varepsilon}{2e\Delta} \Delta + 1 \).

From this, we complete the colouring of \(C \) to a \((1 - \frac{\varepsilon}{2e\Delta}) \Delta\)-colouring of \(G \) in a greedy manner: We colour the remaining vertices one at a time. When we come to colour \(v \), there must be an available colour: Since \(v \) has at most \(\Delta \) neighbours (this is where the sparseness comes in), the number of colours appearing in \(N_v \) is bounded by

\[
\Delta - \left(\frac{\varepsilon}{2e\Delta} \Delta + 1 \right).
\]

Hence fewer than \((1 - \frac{\varepsilon}{2e\Delta}) \Delta\) colours appear in its neighbourhood.

Let us come back to the construction of \(C \). We first assign each vertex of \(G \) a uniformly random colour from \(\{1, 2, \ldots, \lceil \Delta/2 \rceil \} \). If two adjacent vertices have the same colour, we uncolour them. The resulting partial colouring yields \(C \).

The first thing to show is that \(C \) is not too small, which is rather easy. Then we must study, for vertex \(v \), the random variable \(Z_v \) which counts the number of pairs of vertices in \(N_v \) which have the same colour in \(C \). It can be shown that since \(G \) is sparse, the expectation of \(Z_v \) is greater than \(\varepsilon \Delta/e^4 \).

Now that we have proved that many vertices in \(N_v \) are coloured, we must show that \(Z_v \) does not differ too much from its expected value. Once this is done, we use the Local Lemma to prove that every vertex will have such a property, thus proving the property on \(C \). By a technical argument replacing \(Z_v \) with a more amenable quantity, Azuma’s Inequality is used to prove the assumption on \(Z_v \). Roughly speaking, the idea is that a colouring of \(v \) should not influence the colouring of the other parts of \(C \), since \(G \) is sparse.

References

