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1. Motivation

In this talk, we comment on several problems in finite fields, and their relation with analytic com-
binatorics. Algebraic algorithms that deal with polynomials over finite fields can often be analyzed
by counting polynomials with particular properties. We show that the most important charac-
teristics of these algorithms can be treated systematically by a methodology based on generating
functions and asymptotic analysis. We focus on three problems: polynomial factorization, irre-
ducibility tests for polynomials, and discrete logarithm. For each problem, we present an efficient
algorithm, we derive interesting counting expressions, and we mention known results.

2. Basic methodology

2.1. Generating functions. Let ® be a class of monic polynomials, x some integer-valued pa-

rameter on ®. Let
O(z,u) = Z lwlyx(w),
weP
The coefficient [z"u*]®(z, u) represents the number of polynomials of degree n with x-parameter
equal to k. Averages and standard deviations are obtained by taking successive derivatives of
bivariate generating functions with respect to u, then setting w = 1. For instance, the mean is:
_n1 9P(z,u) ,
[A ] Ou u=1l _ pn(l)
[27]P(z,1) Pa(1)’
2.2. Asymptotic analysis. Generating functions encode exact informations on their coefficients.
Their behavior near their dominant singularity is an important source of coeflicient asymptotics.
A first method is known as singularity analysis due to Flajolet & Odlyzko. This requires analytic
continuation (isolated singularity). However, there are some problems in which the generating
functions present a natural boundary at |2| = 1 (each point at the unit circle is singular). Darboux’s
method could be used as an alternative in these cases. Finally, in some cases we use also a saddle
point approximation.

2.3. Permutation model. The joint distribution of degrees in the prime decomposition of a
random polynomial over F, having degree n admits as a limit, when ¢ — oo (n staying fixed!),
the joint distribution of cycle lengths in random permutations of size n. This gives rise to a useful
heuristic: probabilistic properties of polynomial factorization often have a shape resembling that of
corresponding properties of the cycle decomposition of permutations to which they usually reduce as
¢ — oo.



3. Factoring polynomials over finite fields

The results in this part of the talk are from [1]. The Polynomial factorization algorithm proceeds
in three steps:

ERF: Elimination of repeated factors replaces a polynomial by square-free ones that contain all
the irreducible factors of the original polynomial with exponents reduced to 1.

DDF: Distinct-degree factorization splits a square-free polynomial into a product of polynomials
whose irreducible factors all have the same degree.

EDF: Fqual-degree factorization factors a polynomial whose irreducible factors have the same
degree.

As our interest is in dominant asymptotics, we restrict our attention to the costs of products and
ged’s that we assume to have constant costs 7 and 7 respectively.

3.1. Elimination of repeated factors (ERF). The first step in the factorization chain of a
polynomial is the elimination of repeated factors (ERF'). One proves that:

Theorem 1. (i) A random polynomial of degree n > 2 in Fy[z] has a probability 1 — 1/q to be
square-free.
(ii) The degree of the non-square-free part of a random polynomial has expected value asymptotic

to I
nl,
Cq:nz>:1q2n_qn’

where I, is the number of irreducible polynomials of degree n, and a geometrically decaying proba-
bility tail. When q¢ — oo, then Cy ~ 1/q.

Consequently, the overall cost of the recursive calls in the elimination of repeated factors re-
mains O(1) on average; alternative strategies giving the full square-free factorization will lead to
asymptotically equivalent costs; the ERF phase has a cost dominated by that of its first ged.

Theorem 2. The expected cost of the ERF phase applied lo a random polynomial of degree n
satisfies
ERF, ~ mon°.

3.2. Distinct-degree factorization (DDF). The second stage of our factorization algorithm
requires finding the distinct-degree factorization (DDF) of the square-free polynomial a, i.e., split-
ting @ under the form by - - - b, where by is the product of irreducible factors of a of degree k. The
algorithm is O(n?). We provide a precise comparison of three strategies for the DDF phase: the ba-
sic rule, the “half-degree” rule and the “early abort” rule. The global saving of the early abort rule
is of 36%, and the expected cost of O(logq-n®) for DDF clearly dominates the whole factorization
chain.

3.3. Equal-degree factorization (EDF). DDF does not completely factor a polynomial that
has different factors of same degree.

Theorem 3. (i) The probability that DDF yields the complete factorization is asymptotic to

I, n
Cq:H(1+qn_1>(1_q )Inv

¢z = 0.6656, co57 = 0.5618, coo = €77 = 0.5614.
(ii) The degree of the part of the polynomial that remains to be factored by the EDF algorithm is
asymplotic to logn.
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The factorization problem is reduced to factoring polynomials by that have all their irreducible
factors of the same (known) degree k. Our reference is Cantor-Zassenhaus’ probabilistic algorithm.

Fach factor of b has probability a = (¢ — 1)/(2¢) to be a factor of d, and probability g =
(¢ + 1)/(2q) to divide b/d. A random choice splits b in (£, — £) factors with Bernoulli probabil-
ity (%) a’37=*. The analysis combines a recursive partitioning problem akin to digital tries with
estimates on the degree of irreducible factors of random polynomials.

Theorem 4. The expected cost of the EDF phase satisfies
n [n/2]
EDF, ~ — Z K e = [logQ(qk - 1)/2J +v(d* -1)/2-1.
aﬁ k=1

In addition, this cost is O(n?), and for —1/3 < ¢, < 1/3,

_ 3 2
EDF, ~ (171# log, q - n2) (14+ &, 4+ 0(1)).

4. Irreducibility tests for polynomials

A fundamental problem in finite fields is the construction of extension fields, that may be done
by using an irreducible polynomial over the ground field with degree equal to the degree of the
extension. Therefore, finding irreducible polynomials is a central problem in finite fields. A prob-
abilistic algorithm is presented in [5]. The central idea is to take polynomials at random and test
them for irreducibility. This suggests the study of the probability that a random polynomial of
degree n contains no irreducible factors of degree up to certain value m (such polynomials are called
m-rough). Gao and Panario [2] considered the case m = O(logn) and proved:

Theorem 5. Denote by P,(n,m) the probability of a random monic polynomial of degree n over

F, being m-rough. Then when n — oo and uniformly for ¢ and 1 < m < O(logn),

m

pynm) =TT (1- qik)I (1+ o(1)),

k=1

I,

Theorem 6. Let g,(m) =[], <1 — q%) . Then, for any prime power g and positive integer m,

g

1\ "1
e=Hm < g.(m) < (1 — —) e Hm,

V4
When ¢ — oo, we have
m 1 -
1Y\™* I e’
= 11— — MmN —
gq(m) kl_ll ( qk) — € m’

where v is Euler’s constant and e = 0.56416. ...

5. Discrete logarithm problem

For any element b € F,, b # 0, there exists an integer z, 0 < 2 < ¢ — 2, such that b = a”, where
a is a generator. We call « the discrete logarithm of b in the base a.

We present here the index calculus algorithm to compute the discrete logarithm of any b € F,,
b # 0 and restrict ourselves to the case of Fyn.



This method consists of two parts. First, one builds a large database of logarithms by finding the
logarithms of all irreducible polynomials of degree at most m, where m is a fixed positive integer.
Second, one computes individual logarithms. To compute the logarithm of an element g € Fon,
g # 0, one takes a random integer a, computes h = g - a®, where o generates Fyn and factors h in
h = Hle p;'. If each irreducible factor p; has degree p; < m, then

¢
logg = Zeilogpi - a,
=1
which can be easily evaluated by looking up in the database. If not all p; have degree < m, then
one generates another integer a and repeats.

Theorem 7 ([4]). Let F, be fived, frn(2) = [[1e (1 — 25)" 1, and ro = ro(n,m) be the unique
solution in (0,1) of the equation ro( f),/ f)(r0) = n, and let

o= (2

Jm _
T=T0
Then, for
(log n)(loglogn)™! < m < nloglogn(logn)™*, n — 00,
fm(ro)r”

2N f(z2) = (14 o(1)) ————.
17 = (1 of1)) 0

Soundararajan (1995) completed the full range of m estimating [2"]f,,(z) using recurrences
relations. This could be done using partial fraction expansions for 1 < m < (logn)(loglogn)™!,
and singularity analysis for nloglogn(logn)™!.

6. Conclusions

Generating functions and singularity analysis allow for counting random polynomials over finite
fields. We applied this methodology to give precise average-case analysis of a complete polynomial
factorization algorithm [1]. Using this methodology, von zur Gathen, Gourdon & Panario (work in
progress) present further research related to the average-case analysis of polynomial factorization
algorithms. This work centers around [3], and the factoring algorithms of the 90’s.

We also commented on other problems using polynomials over finite fields: tests and construc-
tions of irreducible polynomials [2]; discrete log in Fan [4]; (see also Panario & Viola, work in
progress).
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