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Abstract

Singular and general solutions of algebraic differential equations can be expressed in a differ-
ential algebra setting regardless of the existence of closed-form. Theoretical and algorithmic
tools in this area are presented.

1. Types of solutions

Consider the following differential equation:

(1) Y3 — dzyy’ + 8y? = 0.
This equation admits three solutions of different types:
4
(2) y@)=alz—a)’,  ylx)=0,  ylz)= o

27
The first one is the general solution and the two other ones are singular solutions. The solu-
tion y(z) = 0 is actually a special case of the general solution and is called a particular singular
solution; the third one is an essential singular solution. As showed by Figure 1, both singular
solutions appear as envelopes of the general solution. In general, this is true of essential singular
solutions of first order equations.
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Figure 1. Solutions of (1)
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In the general case of an equation

P(:E7 y’ y” e y(n)) = 07
where P is a polynomial, the singular solutions are the simultaneous solutions of P and its sepa-
rant (?P/(?y(”). Through differential algebra, a meaning can also be given to the “general” solution
even when no closed-form exists. It is also possible to distinguish algebraically between a particular
singular solution and an essential one. The aim of E. Hubert’s work is to provide algorithms dealing
with general and singular solutions in this framework.
To an ordinary differential equation like (1) is associated a differential polynomial

p=yi — dxyoy + 842 € Q(z){y}.

More generally, the differential ring A = A{y} is a ring of polynomials in the variables yo, y1, y2, - - -
endowed with an operator ¢ which is a derivation on the commutative integral domain A and
which is such that éy; = y;41. A differential ideal is an ideal stable under §. For instance the
differential ideal generated by a differential polynomial p is the polynomial ideal generated by p
and its derivatives:

[p] = (p,ép, 6%p,...).

Of particular interest is the radical of this ideal:

{p} =Vl ={acA|3keNd €]
This is the set of differential polynomials vanishing on all the solutions of p. A differential ideal I
is prime when abel =>aclorbel.
We now restrict to A = Q(z) for simplicity, but the results can be stated in much more generality,
see [4, 5]. An important property is that a radical differential ideal R can be decomposed into a
finite intersection of prime differential ideals:

e An
k=1

When none of the Py is included in another one, this decomposition is called minimal and is unique.
These Py’s are then called essential components of R. In the same way as {p} corresponds to the
solutions of p, each of the essential components of {p} corresponds to one type of solutions of p. In
the same example as before, a decomposition is

{p} = {p, v — 2290 + 291,43} N {yo} N {27yo — 42°},

each term corresponding to one of (2). This decomposition is not minimal since the second ideal
obviously contains the first one and therefore corresponds to a particular singular solution. The
minimal decomposition is obtained by removing this second term. Testing the inclusion of the
general component (the first one here) into one of the other ones is related to Ritt’s problem; its
algorithmic resolution via the computation of a differential basis of each component is one of the
aims of [3].

While the singular solutions obviously correspond to components of the ideal {p, s}, where s is
the separant of p, the general solution corresponds to the quotient of {p} by s, where the quotient
of a radical differential ideal R by an element s € A is defined as

R:s={a€Alsae R},

which is itself a radical differential ideal. Two properties are of interest: for any non-empty subset o
of A, one has {0} = {0} : sN{o,s}; when p is irreducible as a polynomial in yo,,... and s is its
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separant, the ideal {p} : s is prime. Thus G, = {p} : s is an essential component of {p} which is
called the general component of p.

2. Algorithms for minimal decompositions

We now turn to the actual computation of the minimal decomposition
{py=G,N R N---N Ry

Ritt showed that each essential component R; is the general component of some differential polyno-
mial a;. The computation of a minimal decomposition then requires finding these a;’s and insuring
that the decomposition is minimal.

Ritt’s low power theorem states that when an irreducible differential polynomial p of a differential
ring A{y1,...,yn} is contained in one of the ideals {y;}, then {y;} is an essential component of {p}
if and only if the lowest degree terms of p do not contain a derivative of y;. This theorem can be
used to give a criterion for a G, to be an essential component of {p} after a preparation process
which rewrites p as a differential polynomial in a:

k. 2: Qg Qe
Sap_ Ca07---7046a0 ”'ae ’

AQye-yAe

where s, is the separant of a, a; = 6ia, Cap,...a. & Gq and e is the difference between the order n
of p and the order m of a. This reduction process is performed in three stages: for ¢ from 1 to e,
a; = da;_1 can be rewritten a; = Sq¥Ymyi + t; for some t;. Then y,, is replaced by (a. — t.)/s, in p.
After normalization this yields

skep = Z Ca, 0%,

where the coefficients do not involve derivatives higher than y,,_;. The process is then repeated with
the y,,—; in succession. This rewrites all the y,,,4; for ¢ > 0. Then in each monomial cqaj” - --ale,
the coefficient c¢q is rewritten éqagy®, where ag is the largest integer k such that ak divides cg,.

In our previous example, the reduction of p in terms of yg is tautologous; the lowest degree terms
of pis —4zyoy; + 8y2 and thus {yo} is not an essential component. The reduction of p in terms
of a = 27yy — 422 is more interesting. The separant s, = 27 is constant and the first step of the
reduction process yields a; = 27y; — 1222, Then p is rewritten successively

P =y — 4eyoy + 845,
19683p = af + 362%ai — 1082(27yo — 42%)a; + 216(27y — 22°)(27yo — 42°),
19683p = af + 362°a; — 108zaga; + 216(27ys — 22°)ao.

The lowest degree term is 216(27yo — 22%)ag which does not involve a; and thus {27y — 423} is an
essential component. (There also exists a simpler algorithm in this case since p is of order 1 [2]).

The computation of the @;’s relies on the Rosenfeld-Grébner algorithm [1] which has been im-
plemented in Maple by F. Boulier. Given a system Y of differential polynomials and a ranking,
this algorithm computes a decomposition of the radical ideal {¥} as a finite intersection of radical
differential ideals:

(Y =7,n---n7,,

each Z; being described by a system of polynomial equations and inequations and a characteristic
set. This decomposition makes it possible to test membership in the Z;’s and therefore in {¥} by
simple reductions. Note that the Z;’s are not necessarily prime.



A lemma of Lazard’s combined with Ritt’s result mentioned above shows that the Z;’s corre-
sponding to essential components of {p, s} must have a characteristic set reduced to one differential
polynomial. This makes it possible to filter out some of the radical ideals. Then prime differential
ideals can be obtained by factorization. This leads to the following algorithm.

Input: An irreducible differential polynomial p.
Output: aq,...,a, such that G,,G,,,...,G,, are the essential components of {p}.
G:=Rosenfeld-Grébner([p, s]);
A= );
for each R in G with cardinality 1 do

for each factor b of R[1] do

if low-powers(preparation(p,b))=cbj then A := A U [b];

Return A.

In our example, the output of Rosenfeld-Grébner is

{wo}, {270 — 427},

from where the computations above have been performed.

It is possible to avoid the factorization and perform only gcd computations. In some cases, this
algorithm can also be extended to compute a differential basis of G,. This is helpful to compute
power series solutions when the initial conditions lie on a singular solution. We refer to [3] for
details.
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