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1. Introduction

A practical algorithm for lossy data compression is presented. It is derived from the lossless
Lempel-Ziv data compression. The principle of the scheme consists in considering approximate
pattern matching where no more than D% of mismatches are allowed.

An algorithm is considered to be lossless when D = 0. For example Hoffman’s algorithm and the
Lempel-Ziv algorithm are lossless. Such algorithms are extensively used for text or data transmis-
sion or storage every time it is required to have error-free recovery. In this case the compression is
limited by information theory. With image or voice/sound compression, there is no need of exact
recovery since the noise in the record and/or the limited sensitivity of our eyes or ears will hide
the details of the data base. In this case the compression can be limitless, depending only on the
degree of fidelily one wants to keep in the recovery. Examples of lossy algorithms are JPEG, GIF,
and MPEG (for motion pictures), they are based on adaptation of Fourier or wavelet transform, or
on self-similarity search as in fractal compression.

The new lossy algorithm can be adapted to numerous applications as image or voice compression.
This universality of use simply comes from the fact that the new algorithm proceeds on the digital
transcription of the data regardless of their origin. In particular it can be adapted to image
compression provided some tuning. An adaptation for voice/sound is under study.

The scheme on image shows performance close to JPEG algorithms and outperforms fractal
compression. More importantly, it benefits of a much simpler “on line” decompression algorithm.
Another advantage is that the new algorithm is tractable to performance analysis when the database
(the text or the image to compress) follows a stochastic model.

2. Measure of fidelity

Before describing the algorithm we will introduce the performance measurement called fidelity.
Let z be a text of length n (|z| = n). On the transmitter side the compression algorithm encodes
z into ¢(x). The compression rate is the ratio |¢(z)|/n. With lossless algorithms the average
compression rate, F|c(z)|/n cannot be better than the entropy h of the source from which the
database is built. In general the lossless algorithms asymptotically attain this theoretical bound
when n — oo. The better the algorithm is, the faster is the convergence:

lim Elc(z)|/n=h.

On the receiver side, the code ¢ is decompressed into ¢(c). With lossless compression ¢(c(z)) = z.
With lossy compression ¢(c(z)) = & which is of the same length as z (|Z| = || = n) but in general
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differs from z. In the following, we use the Hamming distance: d(z,&) is number of mismatches
between z and &, divided by n. We can also accommodate our results to more sophisticated
distances where mismatches have different weight per pair of symbols.

3. Lossy Lempel-Ziv compression Algorithm

Let z be a text. We denote z,, the nth suffix of z (starting at position n) and 2™ the nth prefix of
= (ending at position n). We denote ! the subword starting at position 7 and ending at position j.

The algorithm is a parsing algorithm. We suppose that at step k£ the text has been parsed up to
position n, i.e. 2" has been compressed into ¢(z"). The step k+ 1 will consist in finding the largest
prefix "% of x, which is a copy within distance D of a substring in ™. Assume this copy is at
position 7 in z". Therefore the new parsed position is n+ 7, and the encoded text is ¢(z") plus the
pair (4,7): c(z"*) = ¢(2").“(4,5)”. The substring z7*/ is called the new parsed phrase and j is its
length.

4. Results

4.1. Rate-distortion measure. Let A" be the set of all sequences of length n and let S be a
subset of A”. We call P(.9) the probability weight of 5 in A”.

The optimal compression ratio depends on the rate-distortion function R(D), which is defined
as follows. Let w be a text of length n, we define Bp(w) as the D-ball of center w, i.e. Bp(w) =
{z :d(z,w) < D}. We define N(D, 5) as the minimum number of D-ball needed to cover §. Then:

R.(D,e) = min M7

S5CA™ P(5)>1-¢ n
and the rate-distortion is defined as R(D) = lim._.q 0o Bn(D, ).

4.2. Generalized entropy. The generalized b-order Rényi entropy h,(D) is defined as follows:
_ b _ _ b
n—oo bk n—oo bk
For b — 0 we understand ho(D) = lim, .o, E[—log P Bp(x)) | |x| = n]/k, provided the limit exists.
When D = 0 (lossless case) we naturally recover the known b-order entropies h(*) defined by
E[-P({z})log P({z}) | |«] = n].
4.3. Asymptotic results on lossy Lempel-Ziv. Under some probabilistic model (Bernoulli,

Markov, Mixing conditions), about the already parsed part of the text " we can obtain the following
result.

THEOREM 1. The length of the new parsed phrase L, salisfies:
. L, 1
im =
n—co logn  ho(D)

The convergence is in probability and/or almost sure convergence.

For the Bernoulli model we prove that ro(D) is the compression rate of the lossy Lempel-Ziv
scheme and that limp_o R(D) = limp_o ho(D) = h. In the case of binary uniform database we

have ho(D) = R(D)

THEOREM 2. In the Bernoulli model, the lossy Lempel-Ziv algorithm is asymptotically optimal
when D — 0 and is asymptotically optimal for all D in the binary uniform Bernoulli model.
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