On a problem of Rubel

John Shackell
University of Kent at Canterbury, U.K.

April 22, 1996

[summary by Frédéric Chyzak]

Abstract

For a given function f, we study all the functions that satisfy every algebraic differential
equation with constant coefficients which is satisfied by f. This question was suggested by
Lee Rubel in [3, Problem 22]. Here the author characterizes this set of functions, first when f
is a linear combination of exponential functions, next when f is a Liouvillian function.
Finally, he applies these results to the computation of a series expansion of solutions of
algebraic differential equations.

1. Exponential functions

For two functions f and g, define g < f to mean that g satisfies every algebraic differential equa-
tion with constant coeflicients which is satisfied by f. Let f be the following C-linear combination
of exponential functions

n
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Trivially, ¢ < f implies that g = > 7_, Aze**® with A; € C, since the differential polynomial L(y)
defined by the linear operator [],_,; (% — A) vanishes at f. (We refer the reader to [2] for an
introduction to differential algebra.) This necessary condition for ¢ < f is not always sufficient.
Two cases occur, according to the dimension d of the Q-vector space generated by the A,. Note

that this dimension is also the transcendence degree of C(e*'”, ..., e*) over C.

Transcendence degree d = n. In this case, no equation of order less than d is satisfied by f. If P(y)
is another differential polynomial of order d that vanishes at f, I must divide P. Otherwise, using L
to rewrite f(9) as a polynomial in the derivatives of f of lower orders yields a differential polynomial
of order less than d. This polynomial must then be zero, which gives a contradiction. Therefore, g
satisfies any equation of order d satisfied by f. Next, let Q(y) be a differential polynomial satisfied
by f. Differentiating L sufficiently many times makes it possible to rewrite all the derivatives of f
of order greater or equal to d that occur in ¢) as polynomials in derivatives of order less than d.

Once again, L divides @ so that Q(g) = Q(f) = 0. Hence, g < f.

Transcendence degree d < n. In this case, assume that A, ..., \; are linearly independent over Q,
whereas
d
(1) /\Z-:Ecm»/\j fore;; € Q,wheni=d+1,...,n.
ji=1
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Taking n—1 derivatives of the equation f = Y ;_, a,e**” yields a linear system relating the aje***’s

and the derivatives of f. This system has a Vandermonde determinant, hence we obtain linear
expressions

(2) ape™® = Ry(fy..., f"7V) = Ry, fork=1,....n

Combining equations (1-2) so as to eliminate the A;’s yields the equations

3) RbHR”’: S(foeeSOD) = dt L

||::]m

where b; is a least common multiple for the denominators of the ¢; ;’s and each 7;; = bj¢; ; is an
integer. Now, if ¢ < f, the function g also satisfies the second equality in (3). In addition, it is of
the form g = ", _, Aze**” and therefore,

d d
(4) af’Ha;%” :Af’HAj_%”, i=d+1,...,n
j=1 ji=1

We have obtained necessary and sufficient conditions for ¢ < f when f is of the form Y _, a,e**”

Another approach based on differential ring homomorphisms. We now give another derivation of
these conditions. This second approach follows methods similar to methods of differential Galois
theory and will prove very fruitful when generalizing to Liouvillian functions.

We have a tower of function rings

b, =CC---C® =CleM,...,eM]C---C P, =CleM,...,eM].

Write i)k for the quotient field of ®;. It follows from (1) that the field extensions <I>k <i>k_1 are
transcendental for £k = 1,...,d and algebraic for k = d+1,...,n, with minimal polynomials

(5) m (M) = ()" = ()™

i=

—

For complex constants C}, consider the ring homomorphism 7 : &, — ®, given by T (e***) =
Cre*® for k = 1,...,n. We want to constrain the C}’s so that T is also a differential ring
homomorphism that maps f = Y i_, aze**® to g = Sp_; Are**®. Necessarily, Ay = Cra; and the
minimal polynomials (5) are mapped to themselves, modulo non-zero multiplicative constants i, €
C, so that

T (my (7)) = (Cee™) ™ = T[(Cie*)™ = i (my (7)) = ((e*w)bk “1I (emyk») ,

i=1 i=1

It follows that m, = CI* = Hle C™*, so that condition (4) is also a necessary and sufficient
condition for T to be a differential ring isomorphism.

In the next section, we construct a set of differential ring homomorphisms and investigate its
connection to the set {g | g < f} when f is a Liouvillian function.
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2. Liouvillian functions
We now turn to differential extension towers of the form
(6) O, =CC---CP =P 4[] C---CP,=d,_4[z.],

where the extension ®; = ®;_;[z;] is either

(7) an algebraic extension given by the minimal polynomial my(z;) = 0 with coefficients in ®;_;

(77) an exponential extension given by z; = exp(wy_,), for w,_; € &1

(7i7) an integral extension given by z; = [wy_q, for w,_; € ..

In cases (i) and (7i%), write wy_1 = Ce—1/Me—1 for coprime (x_1,7mx_1 € Pr_1. An element of a
field &, corresponding to a tower (6) is called a Liouvillian function.

We now proceed to define sets Gy, of differential ring homomorphisms from @, to rings of Liou-
villian functions. This construction generalizes that of 7" in the previous section. We take Gg to
be the singleton of the identity on C and define the G;’s by induction on k, considering the three
cases above separately. For any differential polynomial P € ®,{y} and any p € Gy, let p(P) denote
the differential polynomial in p(®;){y} obtained by applying p to each coefficient of P.

Algebraic extensions. For any p € Gy_; and any choice of root s of p(my), p extends to @ as
a differential ring homomorphism by mapping z; to s. We define G, to be the set of all these
extensions.

FEzponential extensions. For any p € Gy_, such that p(n;_1) # 0, p(wy_,) is well-defined and p
extends to ®; as a differential ring homomorphism by mapping z; to K exp(p(wi_1)). We define G
to be the set of all these extensions.

Integral extensions. For any p € Gy_; such that p(n,_1) # 0, p(wy,_1) is well-defined and p extends
to @ as a differential ring homomorphism by mapping z;, to K [ p(w_,). We define G, to be the
set of all these extensions.

The main theorem. The previous construction yields the following theorem. A proof is given in [5].
Similar results are also presented in [4, Proposition 2].

THEOREM 1. Let the Liouvillian extension tower (6) and G,, be as above. Let f = fi/fs € $,,
with coprime fi, fo € ®,. Then g < f if and only if there exists an open dense subset W of C such
that g belongs to the closure of the set

{p(Dp € Gurp(2) £ 0}

in the topology of uniform C* convergence on compact subsels of W.

3. An example

As an example, we compute the set of functions g such that ¢ < f with f = (exp(e”) — 1)/e”.
An algebraic differential equation satisfied by f is

(7) =12 =fr=r+fr-r=o.

We have the tower of Liouvillian extensions C C C[z] C Clz,e”] C Clz,e",e] 3 f. The first
extension is given by z = [ 1; the latter two are exponential extensions. The differential ring
homomorphisms T are defined such that:
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(7) they are the identity on C
Tie=Ty:1—1;

(7t) they extend to the integral extension C[z] by introducing a constant K,
Tlgp) =Ttz /To(l) =z + Kg;
(i17) they extend to the first exponential extension C[z,e”] by introducing a constant K
Tlepex) = To : €° = Ke''") = K e”;
(iv) they extend to the second exponential extension C[z,e®,e®"] by introducing a constant K,
T="Ty:e" — K'e) = [,ef1e",
Finally, the set of functions ¢ such that ¢ < f is the closure of the set
{KQGK”I -1

](1 e’

K\, K,€C K, # 0}.

Making K, = 1, next K, tend to 0 yields the function 1, which is indeed a solution of (7). We have
thus proved that 1 < (exp(e®) — 1)/e".

4. Series expansion

Theorem 1 can be used to help compute a series expansion for a solution of an algebraic dif-
ferential equation belonging to a Hardy field [1]. It can be proved that the number of possible
nested (asymptotic) forms f; for a solution is finite. This number grows exponentially with the
order of the equation. Writing f in the form f;(1+ €), and substituting it into the equation yields
an equation for the rest ¢, of possibly doubled order. It follows that the exponential complexity of
this first, naive method makes it impracticable.

Assume f can be written in the form F + ¢, where F is the sum of a finite number of first
terms in an asymptotic expansion and g is the rest, of smaller asymptotic growth. If f does not
belong to the closure under consideration in Theorem 1 applied to the Liouvillian function £,
then there is a differential polynomial P(y) that vanishes on F' but not on f. From the equation
defining f, the finitely many possible orders of growth of P(f) can be computed. Next, each term
in P(f) = P(F + g) contains g or one of its derivatives. This yields a number of possible orders of
growth for g, hopefully smaller than the one obtained by the general method.
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