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Abstract

We deal with the problem of minimizing the supremum norm on [0, 1] of non zero poly-
nomials of degree at most n with integer coefficients.

1. Introduction

We consider the supremum norm on polynomials || P||. = maxp7|P(t)]. We denote by Zg[z]
the set of polynomials with integer coeflicients of degree < k. We consider the polynomials P, in
Zy|x] and the quantities C such that

1
(1) 1Pl =, min |Ple; and  Cy=—plog |l
According to [1], the polynomials P, are called integer Chebyshev polynomials in [0,1]. These
polynomials appeared in the literature because as we discuss below, it was thought that they
could be used to obtain an elementary proof of prime number theorem. Aparicio showed that in
fact, one cannot prove the prime number theorem in this way. However, the problem of finding
the polynomials P is interesting in itself. According to Borwein and Erdélyi, “Even computing
low-degree examples is difficult”.

2. The prime number theorem

Let d,, denote the lowest common multiple of 1,2, ..., n. Proving the prime number theorem can
be elementary reduced to proving the inequality

lim inf log d,

n—o0o n

> 1.

An idea to obtain this result is to use the fact that P € Z,,[z] implies fol P(z)dr € Z/dyq.
Applying this to the polynomial P?" leads to

log d,, S _log || Pyl

1
1
| 2|2 > /0 P (z)dz > ) thus lim inf >

2kn+1 n—oo n k

Therefore, if we had limsup,_ . C = 1, one could prove the prime number theorem in this way.
Indeed, it appears that this is not the case. The sequence (C}) converges to a limit C', and Borwein
and Erdélyi [1] showed that C' € (0.8586616,0.8657719). Thanks to our new results, we improve
the lower bound on C'.
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3. Related problems

3.1. Integer transfinite diameter. Our problem can be stated in terms of integer transfinite
diameter. The transfinite diameter of a set 5 of complex numbers is defined by

((S):=lim sup J]la - Z],|1/(Z)_

=00 41, Zn€ES i<j
A theorem of Fekete states that

1(S) = inf max | P(z)[/ ds(P),
Pe(C[z],P monic €S

The integer transfinite diameter of a subset S of R is defined by

t - inf P(z)|}/ des(P)
Z(S) PEZ[x]l,geg(P)>0I£lEa5X| (m)l

Thus, our problem can be rephrased as: finding the integer transfinite diameter of the interval
[0,1]. If I is the interval [a,b] with a < b, it is known that ¢(1) = |I|/4, with |I| = b—a. If |I]| > 4,
we have the equality ¢5(1) = t(I). For |I| < 4, the best known result is due to Fekete and states

that 1(S) < t2(5) < VI(3).

3.2. Trace of totally positive algebraic integers. Let «; be an algebraic integer of d,
Qa,...,04its conjugates. We say that a; is totally positive if all the a; are real and positive. Siegel
has proved in 1945 that except for finitely many exceptions, we have the following lower bound on
totally positive algebraic integers

Gt ed g gs3
y > 1.733.

A general result states that this problem is related to the integer transfinite diameter:

THEOREM 1 (BORWEIN, ERDELYI). Let m be a positive integer.

1 1 ay+ -+ ag
_ _— >
If tz ([O’m]) < o then 7 >0

for totally positive algebraic integers, with finitely many exceptions.

4. Structure of the polynomials

The set By = {P € Zi[z] : P(1 —1z) = (—1)*P(2)} is related to our problem by the following
lemma [2].

LEMMA 1. For any nonnegative integer k, we have
Eop = Zi[z(1 — 2)] and Eoprr = (1 = 22)Z[z(1 — z)],

and there exists an element F of degree k in F;, for which

1
Cr = —ElogHFHoo-
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5. Computation of minimal polynomials

The previously known integer Chebyshev polynomials had small degrees. We now briefly describe
the techniques used to compute a polynomial P of degree k satisfying (1) for k& up to 75. The
outline of the algorithm goes as follows:

(1) Find a good upper bound for || P;|c;
(2) Repeat
— use this bound to determine factors of P,
— use these factors to improve the bound,
until no more factors are found;
(3) Perform an exhaustive search for the missing factors.

5.1. First upper bound. A good bound is given by ¢; = mingcs< || PePr—e|co-

5.2. Bounds and factors. We use the following facts to find factors of G' € Z [z].

— If ¢|G(p/q)| < 1 then (gz — p) is a factor of G.
— This technique extends to multiple factors via Markov’s inequality:

or nz(n2 _ 12) .. -(n2 — (*r — 1)2)
(r) <
B R T A wr pevrory y e Lo A L COLE

— At z = 0, we have a better bound due to Borwein and Erdélyi:

Gz)=2"7"Q(z) = [QO)<v2p+ 1(9 ;ﬁ; 1) 1G] co-

— More generally, we can find higher degree factors. Let F = agz™ + --- + a,, € Z[z] be
irreducible, ay,...,a, its roots. The expression R = ajG(a;)---G(a,) is an integer (it is
a resultant). If |R| < 1, then F'is a factor of G.
Once factors have been obtained in this way, we have Py(z) = F(z)G(2(1— z)), where F is known
and G unknown. Bounds on G(z) at a given z can be obtained using the fact that | F(u(z))G(z)| <
| Pelloo < ¢ with w(z) = £(1—+/1 — 4z). This enables to find other factors. This technique provides
all the integer Chebyshev polynomials of degree < 12.
To get tighter bounds on the value of G at a given z, we then turn to Lagrange interpolation. If
Tg,..., T, are g + 1 distinct points in [0, 1/4] then

G(z)=>_ G(z)]] "% thus z)| < ¢ Z H |
i=0 jai T Ty ( J;m L
This gives a bound on |G(z)|, which can be further improved by finding a set {z,...,z,} which

minimizes the right-hand side of the inequality. By this technique, all Chebyshev of degree < 30
are found.

5.3. Exhaustive search. By plugging values of z in the inequality |F(u(z))|- |G(z)| < ¢,
we get linear inequalities satisfied by the coeflicients of the factor G'. These inequalities define a
polyhedron whose interior integer points we have to determine. We solve this problem by using a
simplex method to compute bounds on each coordinate. Then if the size of the bounding polyrect-
angle is not too large, we check each of its points to see whether it belongs to the polyhedron. For
larger polyrectangles, we select the variable with least variation and apply recursively the same
technique. In this way, we test a finite set of polynomials. This technique is reasonable for n < 13
(i.e., degree 24).
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5.4. A detailed example: Ps;;. We show how to find Ps; using our algorithm.
A first upper bound is obtained from the previous polynomials

[[Pazlloo < €57 = min ||P, Par_g|o = 0.283 107",

We then look for factors of Ps;. At each stage, we have Ps7(z) = F(z)G(2(1 — z)) with F known
and G unknown, g = deg(G).

— Since 37 is odd, a factor is ' =1 — 2z by lemma 1 (g = 18).

— We have 5'%c3; < |F(u(1/5))| thus 5'®|G(1/5)| < 1, and a factor is F':= F - (52% — bz + 1)
(g =17).

Using the Borwein-Erdélyi bound, we find the factor F := F - 2°(1 — z)? (g = 8).

Using Lagrange interpolation, we find |G(0)| < 1, thus a factoris F':= F-a(1—z) (¢ = 7).
The same technique applied with the new factor F gives |G(0)| < 1, thus a factor is F :=
F-z(l—2)(g9=6).

The same technique gives 4°|G(1/4)| < 1, thus F := F - (42? — 4z + 1) (g = 5).

— The same technique gives
11 11 -
G —I'i\/g G 7\/5 <1
58 58

thus F:= F - (292* — 582% + 402% — 112 4+ 1) (g = 3).
— The same technique gives |G(0)| < 1 thus F = F-2(1—z) (g = 2).
— The same technique gives 4*|G(1/4)| < 1, thus F := F'- (42® —4z + 1) (¢ = 1).
The step of exhaustive search finally yields 6 solutions, and only one has the right ||-||... Eventually,
we find
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Par(z) = 2'*(1 — 2)"*(1 — 22)°(5a® — 5z + 1)*(292* — 582° + 402* — 11z + 1).
6. A new factor

The only factors of all the 75 first polynomials are the following, expressed in the variable
uw=z(l-2),
A =u, Ay=4u—-1, As=>5u—1, A,=6u—1, A;=29u*—11u+1,
Ag = 169u® — 94u® + 17u — 1,  A; = 961u* — 7124° + 194u* — 23u + 1,
Ag = 4921u” — 4594w + 1697w’ — 310u” + 28u — 1.
The factor Ag is a new one, and it has four non real root, which gives a negative answer to an open
problem from [1]: Do all the integer Chebyshev polynomials on [0, 1] have all their zeros in [0,1] ?
Thanks to this new factor we can improve the bound on C. Following the lines of [1], we use

a simplex method to compute a polynomial Q = A?* A% ... of degree d = 10'° — 9 such that
—21og [|Q|lcc = 0.8591978, thus C' > 0.8591978.
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