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Abstract

We formally define a class of sequential pattern matching algorithms that includes all
variations of the Morris-Pratt algorithm. We prove for the worst case and the average case
the existence of a complexity bound which is a linear function of the text string length
for the Morris-Pratt algorithm, using the Subadditive Ergodic Theorem. We establish some
structural property of Morris-Pratt-like algorithms, proving the existence of “unavoidable
positions” where the algorithm must stop to compare. We compute also the complexity of
the Boyer-Moore algorithm.

1. Sequential pattern matching algorithms

Basic Definitions. Throughout we write p and t for the pattern and the text which are

of lengths m and n, respectively. The ith character of the pattern p (text t) is denoted as p[i]
(t[1]), and by t/ we denote the substring of t starting at position 7 and ending at position j, that is
t/ = t[i]t[i + 1] - - -t[j]. We also assume that the length m of a given pattern p does not vary with
the text length n.

We want to investigate the complexity of string matching algorithms [2]. We define it formally
as follows.

DEFINITION 1 (COMPLEXITY).

(1)

(2)

For any string matching algorithm that runs on a given text t and a given pattern p, let
M(l, k)= 1if the Ith symbol t[{] of the text is compared by the algorithm to the kth symbol
p|[k] of the pattern. We assume in the following that this comparison is performed at most
once.

For a given pattern matching algorithm, a partial complexity function ¢, ; is defined as

¢ s(t,p) = Z MIl, k]

1e[r,s],k€[1,m]

where 1 < r < s <n. Forr =1 and s = n the function ¢, := ¢, is simply called the
complexily of the algorithm. If either the pattern or the text is a realization of a random
sequence, then we denote the complexity by a capital letter, that is, we write ', instead
of ¢,,.

An Alignment Position AP is a position of the text which is aligned with the first character of the
pattern during the processing of the algorithm, and such that, with the corresponding alignment,
at least one character of the pattern is compared with the text.
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DEFINITION 2. A string searching algorithm is said:

(1) semi-sequential if the text is scanned from left to right;

(2) strongly semi-sequential if the order of text-pattern comparisons actually performed by the
algorithm defines a non-decreasing sequence of text positions (/;) and if the sequence of
alignment positions is non-decreasing.

(3) sequential (respectively strongly sequential) if they satisfy, additionally for any £ > 1

M[LE|=1=t 4,y =pi "
Note that condition (3) forbids unnecessary comparisons.

EXAMPLE (NAIVE OR BRUTE FORCE ALGORITHM). The simplest string searching algorithm is
the naive one. All text positions are alignment positions. For a given one, say AP, the text is
scanned until the pattern is found or a mismatch occurs. Then, AP + 1 is chosen as the next
alignment position and the process is repeated.

This algorithm is sequential but not strongly sequential. Condition (2) is violated after any
mismatch on a alignment position [ with parameter £ > 3, as comparison (I + 1,1) occurs after

(I+1,2)and (I +2,3).

EXAMPLE (MORRIS-PRATT-LIKE ALGORITHMS [3]). Morris-Pratt like algorithms are strongly
sequential; when a mismatch is found, they shift the pattern by the largest periodicity of the
prefix of the pattern examined at the corresponding alignment position. The Knuth-Morris-Pratt
variant remembers the last question concerning the mismatch position of the text and does not ask
it again; the Simon variant remembers all the questions at the mismatch position, and does not
ask them again. The efficiency of these algorithms is slightly better as the number of remembered
questions increases.

It was already noted [3] that after a mismatch occurs when comparing t[/] with p[k], some align-
ment positions in [[+1,...,/4+ k— 1] can be disregarded without further text-pattern comparisons.
Namely, the ones that satisfy t;if‘l # pi~t, or, equivalently, piy # p¥~% and the set of such i
can be known by a preprocessing of p. Other ¢ define the “surviving candidates”, and choosing the
next alignment position among the surviving candidates is enough to ensure that condition (2) in
Definition 2 holds.

EXAMPLE (ILLUSTRATION TO DEFINITION 2). Let p = abacabacabab and t = abacabacabaaa.
The first mismatch occurs for M(12,12). The comparisons performed from that point are:

1. Morris-Pratt variant: (12,12);(12,8);(12,4);(12,2);(12,1);(13,2);(13,1), where the text
character is compared in turn with pattern characters (b, ¢, ¢,b,a,b,a) with the alignment
positions (1,5,9,11,12,12,13).

2. Knuth-Morris-Pratt variant: (12,12);(12,8);(12,2);(12,1);(13,2);(13,1), where the text
character is compared in turn with pattern characters (b,¢,b,a,b,a) with the alignment
positions (1,5,11,12,12,13).

3. Simon variant: (12,12);(12,8);(12,1);(13,2);(13,1), where the text character is compared
in turn with pattern characters (b, ¢, a, b, a) with the alignment positions (1,5, 12,12,13).

Positions 1, 5 and 12 are unavoidable for all these Morris-Pratt-like algorithms.

DEFINITION 3. For a given a pattern p, a position ¢ in the text t is an unavoidable alignment
position for an algorithm if for any =,/ such that » < ¢ and [ > ¢+ m, the position ¢ is an alignment
position when the algorithm is run on t'.
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THEOREM 1. [7] Given a pattern p and a text t, all strongly sequential algorithms have the same
set of unavoidable alignment positions U = |J_,{U;}, where

T : : l
= <
Ui mm{fgélglz{tk <pll+1}
and t'. < p means that the substring t\ is a prefiz of the pattern p.

1.2. Analysis. In the “average case analysis” we indicate that under assumption of Stationary
Model (both strings p and t are random realizations of a stationary and ergodic sequence), the
average complexity €, may be computed by a direct application of an extension of Kingman’s
Subadditive Ergodic Theorem due to Derriennic [4] . See also [5].

LeEMMA 1. [7] A strongly semi-sequential algorithm satisfies the following basic inequality for all
r such that 1 < r < n:

|Cl,n - (Cl,r ‘I’ Cr,n)l S 2m27

provided any comparison is done only once.
We get also:

THEOREM 2. With p a pattern of size m, t a text of size n, and a strongly-sequential algorithm,
the number of comparisons is given by:

(a) worst case: lim,,_ ., max; ¢,(t,p)/n = a1(p),
(b) p given, t random: C,(p)/n "> ay(p) (on the average),
(¢) p,t random: lim, ., £, ,C,/n = a3z > 1.

In the Boyer-Moore algorithm [1], a window of size equal to the size of the pattern is moved
from left to right, with shifts depending of the text and pattern contents; inside the window,
scanning is performed from right to left; the Boyer-Moore algorithm gives a counterexample
to the preceding theorem, inside the class of pattern-matching algorithms: given the text t =
{-+-yPaz*(bazbzz)"-- -}, and a pattern p = {z*az?bz?a}, it is impossible to find a set of unavoid-
able positions for the Boyer-Moore algorithm.

2. Boyer-Moore algorithm

For the Boyer-Moore algorithm, a head is the rightmost position of the text in the window after
a shift; let H, be the number of heads in a text of length n. We show by a Laplace transform
method the convergence of H, to a variable with normal distribution.

Both expectation and variance of H,, are functions of the shift polynomial, defined as f,(z) =
3, 2% where d(a) is the shift of the first occurrence of letter a from the right extremity of the
pattern and g, is the probability of occurrence of letter a. With this definition, the shift polynomial
of the pattern 10001 is £(z + 2*), with uniform distribution for letters 0 and 1.

When considering the complexity C¥1 of the algorithm for a fixed pattern P and a text of length
n, we define X; as the number of comparisons done for an alignment at position 7, and Z; = 1 when

7 is a head, 0 otherwise. We have

After an algebraic manipulation, we take the expectation:

E lC,EH] _ % X": E[X,Z;) - % Xn: EIX;(1 = 7))

n
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From this decomposition, we show that £ [%C’T[LP]] — ¢p, and give an expression for ¢p. We show
also that the fourth moment is bounded.

With these results for moments, we apply a central limit theorem for dependant variables [5],
where the strong mixing condition is equivalent to independence of positions sufficiently distant.
This proves the convergence of CIX1 to a variable with normal distribution.

Unavoidable positions. Almost surely, for a random text, there exists one unavoidable position;
formally, we say that Zj is determined by t;4q ---1;_ if this string is sufficient to tell whether
Zr = 0 or 1. We denote the indicator of this event by

f(j) -1 ) :
k — 1{Z) determined by tjy1-tx_1}s

we have then:
LEMMA 2. E[1— 9] < pb=i=2 where p < 1, for k — j > 2m.

Proor. [Sketch] If f,(f) = 0, then p,,_; does not occur m — 1 times consecutively in #;41 -+ -t4_1.
Given a fixed set of m — 1 consecutive characters, the probability that not all of them are equal to

Pm_1is A, with A < 1. The probability of no string of m — 1 consecutive occurrences of p,, ; is at
most ALF=I=20m=Dl; gake p = AVE™. O

3. Number of occurrences of a word

We extended the classical result of Guibas and Odlyzko [6] to the Markovian case, giving all
moments. This is done by constructing language expressions that characterize both models, and
by analysis on the corresponding generating functions.
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