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Abstract

Quickselect is an algorithm due to Hoare which uses the same partitioning process as
Quicksort. As in Quicksort, there is a median-of-three version which reduces the number of
comparisons and passes. This is analyzed as well as a variant called multiple Quickselect.
All these analyses result in explicit expressions for the number of passes and comparisons.

Quicksort and Quickselect work as follows. The input is an array of n elements. First, one
of these elements—the pivot—is selected at random. Then partitioning takes place: the array is
rearranged so that its elements smaller than the pivot end up to the left of it, while the elements
larger than the pivot end up to the right (see Fig. 1). It is an important hypothesis for the analysis
that this partitioning should be stable, i.e. the order of the smaller elements and the order of the
larger elements should not have been modified during the partitioning. In the next step, Quicksort
and Quickselect differ. In Quicksort, whose aim is to sort the array, the same process is applied
recursively to both sides of the array. In Quickselect, whose aim is to find the jth element of the
array, the process is applied recursively to the side containing it.

In the case of Quicksort, the number of passes and the number of comparisons satisfy recurrences
from which follow explicit formule in terms of the harmonic numbers H, = > 7_, 1/k [5].

A classical optimization of Quicksort is obtained by selecting the pivot by a median-of-three
process: three elements of the array are selected at random, and the pivot is taken to be the median
one. The analysis of this optimization is well-known [3, 2]. In [4], the analysis of Quickselect with
this optimization is carried out. The same technique is applied to multiple Quickselect in [7]. We
now summarize these works.
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1. Number of passes and comparisons

After the pivot has been selected by the median of three process, the probability that the parti-
tioning yields two sub-arrays of sizes (kK — 1) and (n — k) is
k—1)(n—k
N CESVCEY:)
(3)
Let F, ;(z) denote the probability generating function of the number of passes necessary to select
the jth element out of n under the assumption that all n! permutations of the array are equally
likely. Then by a simple generating function argument

j-1
(1) Fn,j(z) =z [Z 7'rn,k}{—’n—k,j k ‘I’ 7TTLJ E Tn ka 1] )

k=1 k=j+1

for n > 3 while F1(2) = Fhr1(z) = Fy2(2) = 2. The expected number of passes is obtained
as P,; = F, /(1) and the generating function P;(2) = 3_,5; P, ;2" satisfies the following mixed
shift-differential equation derived from (1):

1 1 yy? Pl(z)
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Since this is really an equation in Pj, it is convenient to set D; = P;. Then, with the help of

Maple, it is possible to find closed-form formulae for D,(z), Dy(z), etc. All these functions are
linear combinations of (1 — z)"?log(1 — z), log(1 — z), (1 — z)~% and polynomials in z with simple
rational coeflicients. It is possible to spot patterns in these coefficients and this suggests studying
the bivariate generating function D(z,u) of the D;(z). From (2), it follows that D(z, u) satisfies a
linear differential equation:

e <(1 _12)2 i _u;)2> L=y <(1 —12)“ a iz)“) |

with initial conditions D(0,u) = w, D,(0,u) = 2u(1 + ). This equation turns out to have a
(several pages long) closed-form solution involving the logarithms of (1 — uz) and (1 — z) and
rational functions in « and z. Extracting the coefficients then yields the following theorem.

THEOREM 1. Given a random permulation of n elements and 5 < j < n—4, the average number
of passes needed to select the jth element using Quickselect with a median-of-three partition is
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where nf = n(n —1)---(n —k+1).

For instance, to compute the median of 2n + 1 elements requires a number of passes Py, 41 41 =

H2n+1 + 3 36 Hn+1 +0(1) = 172 logn + O(1) instead of 2logn in the classical case. The savings are
thus about 14%

The number of comparisons is obtained in a similar fashion. In (1), it is sufficient to replace
the factor z by z"~! to obtain the generating function of the number of comparisons (at each pass,
there are n — 1 comparisons during the partitioning). Then again, the bivariate generating function
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of the number of comparisons to select the jth element out of a random permutation of n elements
can be found explicitly, and extracting the coefficients yields the following theorem.

THEOREM 2. Given a random permulation of n elements and 5 < j < n—4, the average number
of comparisons needed to select the jth element using Quickselect with a median-of-three partition
1S

72 156 156 36 36 88 24 . 3(j—1)2 156]
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where n® =n(n—1)---(n —k+1).

Computation of the median therefore requires 11n/2+4O(log n) comparisons whereas the classical
method requires 4(1 4 log 2)n + O(logn) comparisons. The savings are thus about 19%.

The same technique also applies to several variants, such as counting only n — 3 comparisons per
partition or selecting the smaller of two random elements as the pivot.

2. Multiple Quickselect

In multiple Quickselect, one searches simultaneously for the elements of indices {ji,...,7,} (0 <
J1 < -+ <j, <n). The analysis is very similar to the analyses above and results in ezplicit formulae
for the number of passes and the number of comparisons. With obvious notation, one has

Plnijy, .o 0pl = Hjy + Hugaoj, + QXP:HJ,+1—]'¢_1 —2p+1,
t=2
Clnijr, e dpl =20+, — 1 +2(n+ V)H, —2(j: + 2)H;, —2(n + 3 — jp)H,H_l_jp
- QZP: (]t +4 - jt—l)HjH-l—jt—l + 8p - 2.
t=2
Of course, as a special case, we recover the analysis of Quicksort when p = n.
A recent work of Lent and Mahmoud [6] gives asymptotic estimates for so-called grand averages:

1 . .
Pn,p = Ty Z P[n;]lw"v]p]v
(;)

1<j1<<jp<n
1 . :
Cop = m Z Clnsgus -y Jpl-
p/ 1<j1<<jp<n
Using the formule above and summing the harmonic numbers by direct manipulations or standard
generating function techniques [1], it is actually possible to derive closed-form formule for these
averages in terms of harmonic numbers [7].

THEOREM 3.
2p(n + 1)? 2(p—1)?
Py = Hypr —H)+1-2p— 22—
! ('n+2—p)(n+1—p)( =) S
1
Cnp= [(QHP + 1)n3 — 8pH,n* + A(p+2)H, + p)n2

(n+2-p)(nt+1l-p)
+2p(p— 9)H,n+ (2(4p+5)H, —5p* + p— 1)n+2p(p— 5)H, + 4(p+ 1)H, — p(p+ T7)] .
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