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1. Polygons as vesicle models

Biological membranes consist of lipid bilayers and, when closed, form vesicles as blood cells or
bi-lipid layer membranes. These 3-dimensional vesicles form a variety of shapes depending on the
surface tension, osmotic pressure, etc (see Fig. 1).

A convenient model for the boundary of the two-dimensional vesicle is a polygon either in the
continuum or on a lattice. The polygon is taken to be self-avoiding and one asks, in the lattice
version, for the number of polygons with 2n edges enclosing area m. Here, we consider polygons
on the square lattice (see Fig. 2).

We denote ¢, ,, the number of all polygons with 2n steps which enclose an area of size m, and
define the polygon-generating function G(z,q) to be

G(z,q) = Z Crmx"q™.

Each class of polygons (staircase polygons, bar-graph polygons, column-convex polygons) defines
a model of vesicles. We want to give an explicit formula for G(z, ¢) and information on its singularity
structure for all the models.

2. Statistical mechanics, some rigorous results

Mathematically, the model requires the calculation of the same object, the generalized partition
function G(z,q), where

G(z,q) = E q" Zp(z) with Zm(z) = Z [
m=1 n=2

FIGURE 1. A vesicle.
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Ficure 2. A polygon with area m = 26 and perimeter 2n = 42.

Physically it is of interest to understand the behavior of the partition function Z,,(z) of vesicles of
fixed area m as the perimeter fugacity z is varied [6, 7, 4]. The behavior of the partition function
for large vesicles is determined by the mathematical behavior of the generating function near its

radius of convergence.
For a fixed area m, the free energy H(y) of a vesicle ¢ is related to the energy E and the
perimeter 2n(p) of ¢ through the relation H(yp) = —F.n(y). The partition function Z,,(z) is

Zm(x) — Z e~ PH(Y) — chymeﬁE”

lol=m n>2

with z = F.
The total free energy is

B fn(z) = —log Zy(z)

m

and assuming the thermodynamic limit exists, we have for the thermodynamic free energy per step

ful2) = lim —log(Zon(2)).

m—oo M,

We can also consider the internal energy

or the specific heat

ﬁcm(x) = <x%)2 <%log Zm(x)> .

Let ¢.(z) be the radius of convergence of the generating function G(z, ¢) for fixed z:

3=

¢.(z) = lim (Z,,(z))”

m—00

For vesicles this is related to the free energy per unit length of vesicles of fixed area in the limit of
large areas through the relation

g.(z) = el=(=), where — Bfeo(z) = lim %log(Zm(x)).



3. Proof of the existence of the thermodynamic limit

We give here a sketch of the proof. For more details, see [9]. We use the following lemma:

LEMMA 1. Let {a,},>0 be a sequence in R. If the sequence is sub-addilive (a4, < @, + ap,)
then lim,,_ ., %an =inf,,_ . %an exits (may be —o0).

By a standard concatenation construction in which two vesicles are joined by a ‘neck’ consisting
of a single square, we obtain a larger vesicle and thereby find:

where Z,,(¢) = 3., ¢n.mq™. Moreover, if we define

a, = —log(¢Z.(q))

then {a,} verifies a, 4, < @, + @, and lim, ., (Z,(q))

exists.

3= 3=

Now, we examine bounds on z.(¢) = lim,_, (Z.(¢q))
Case ¢ < 1. The minimum area for perimeter 2n is mpyy, = n — 1 and hence Z,(¢) < Z,(1)¢" !
and z.(q) > psawq "', where we write SAW for self-avoiding walk model.

The number of polygons with perimeter 2n and area muy;,(n) is the number of site trees on dual
lattice with n — 1 vertices, say d,, and hence Z,(q) > d,¢" " and z.(q) < fig™* (see Fig. 3).

Since Z,(q) is monotone increasing in z, z.(¢) is monotone non-decreasing. Therefore to prove
that z.(¢) is log-convex it suffices to show that:

ZUESXO RN

This follows immediately from

Z chmlq Ecnmgq 2

q

FiGURE 3. Schematic plot of the radius of convergence of the generating function
showing the tricritical point.
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FIGURE 4. Interpretation of Z(**)(q).
Case ¢ > 1. In that case, we have ¢m==(") < 7 (g) < ¢™==("7Z (1) with mpa(n) ~ % and
Zn(1) ~ p2w . Thus Z,(q) ~ ¢* and
z.(q) = 0.

In fact, the ‘blown-up’ configurations completely dominate the asymptotics.

THEOREM 1 (PRELLBERG, OWCZAREK, 1995).
11\ % ¥ :
Za)~ 20 = (5i0) X e
q 9 0 k=—o00

in the sense that for all ¢ > 1 there are C' > 0 and 0 < p < 1 such that for all n
|Z0(0)/25a) = 1| < Cp"

We can interpret Z(%*)(g) as the generating functions of k x (n — k) rectangles (37— ¢**=%))

where 4 corners (4 Ferrers diagrams: (%, %

Fig. 4).

) ) are removed, which are in fact convex polygons (see
(0]

4. Tricritical phase diagram

We show that, for ¢ < 1, G(z,q) converges for ¢ < z.(¢q). For ¢ > 1, G(z,¢q) converges only
for = 0. These results can be expressed in terms of a phase diagram in the space of the two
fugacities  and ¢. The form of this phase diagram is shown in figure 3. For z < z.(¢) and ¢ < 1
the polygons are ramified objects, closely resembling branched polymers. As ¢ approaches unity
less ramified configurations predominate; at ¢ = 1 one has standard self-avoiding polygons. This
region, {z < z.(¢q),y < 1} might be referred to as the ‘droplet’” or ‘compact’ phase. For ¢ > 1 the
polygons become ‘expanded’ or ‘inflated” and approximate squares, their average areas scaling as
the square of their perimeters. For ¢ < 1 and = > z.(¢), we expect that this phase can be described
as a single convoluted polygon that ‘fills’ the whole lattice rather like a closed Hamiltonian path:
one might describe it a a ‘seaweed phase’ [9].

Here we give main results about the singularity diagram (see Fig. 5):

— ¢.(x) is singular in = z, thus we have a phase transition.
— G(z,q) diverges at ¢.(z) for z > z;.

— G(z,q) is singular at ¢.(z) = 1 for z < ;.

— G(z,1) is finite with singularity exponent v, as z — ;.

— G(z4,¢q) has a singularity with exponent v, as ¢ — 1.

— (@4,1) is a tricritical point with crossover exponent ¢ = -

u
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FiGUuRrRE 5. The singularity diagram.

— The scaling function f is:

G592, q) ~ (1— )" f ({1 - ¢} ~*{z - 2})

with f(z) ~ 27" as z — oo and f(z) ~ 1 as z — 0.
— The shape exponent is ¢ = i and ¢.(z) ~ 1 — a(z — z,)¥.

5. Partially convex polygons: a solvable model

The analysis of partially convex subsets of self-avoiding polygons confirms results of the previous
section. These partially convex polygons form a universality class with the same crossover exponent
as expected in the unrestricted problem. The particular models we consider are subsets of column-
convex polygons: staircase polygons, directed column-convex polygons and column-convex polygons
(see Fig. 6).

These models have been studied by a variety of methods:

— mapping to a g-extension of an algebraic language [8],
— recurrence relations [12, 5],

— linear functional equations [3, 2],

— transfer matrix techniques [1].

All these models possess the characteristic feature that their single-variable generating functions
are algebraic, while the two-variable generating functions are expressed in term of quotients of
g-series.

staircase polygons directed column-convex polygons column-convex polygons
Ficure 6. Partially convex polygons.
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Staircase Polygons

+ + +-+J:

D(z; p) D(qaz; )y Dy(qe; 1)geD(z;p)  D(qx; 1) D(x; ) D, (qz;1)qzyp  qryp  qeD(z;p)

Ficure 7. The diagrammatic form of the functional equations for staircase polygons
and directed column-convex polygons.

We define the polygon generating function G(z,y, ¢) to be

G(2,9,0)= D Copnym@™y"q".

Nz, My, M

We derive the generating function for each models by using an inflation process [10, 11, 3]: the
height of the polygon is increased by one lattice spacing and concatenated with rows of height one
(see Fig. 7).

Denoting the generating function for the staircase polygons by S(z,y,q), we therefore get im-
mediately

S(,y,9) = (S(qz,y,9) + q2) (y + 5(2,9,9)).-
In order to write down a functional equation for the column-convex polygons, we need to keep

track of the height r of the rightmost column of these polygons. We define the generating function
D(z,y,q; 1) to be

D(@,y, ;)= D Covnymr2 ™y g1

If we denote %D(qw,y,q;u)‘ X by D,(qz,y,q;1), we get the following functional-differential

H:
equation:

D(z,y,q;pu) = (14 Dy(qz,y,q;1)) gz (yp + D(z,y,q; 1))
+ D(qz,y,q; w)yu+ D(qz,y,q;1)D(z,y, ¢; 1)

We can transform this equation to one functional equation in D(z) = D(z,y,¢;1) by partially
differentiating with respect to g and setting p = 1. This leads to

0= D(¢*z)D(qz)D(z) + yD(¢*z)D(qx) + yD(¢*z)D(x) — (1 + q)D(qz)D(z) + y*D(¢*x)
—y(1+ q)D(qz) + q(1 + qz(y — 1)) D(z) + yg*z(y — 1).

Setting ¢ = 1 gives the perimeter generating function which satisfies a cubic equation and has a
square-root singularity at
V100 — 4

= ————— for T =
Y 3 Y
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implying that v, = —1.

First we note that the functional equation for staircase polygons is of the form
G(z)G(qz)+ a(z)G(z) + b(z)G(gz) + ¢(z) = 0

which can be linearized by the use of the transformation

G(z) = a}]g(qf)) — b(z)

where a has to be chosen to match the initial condition. This leads to a linear functional equation
in H(z),
o’H(q’) + ala(z) — b(qz)]H (gz) + [e(2) — a(2)b(2)] H(z) = 0.

LemMA 2. The solution of

N N
0=xzH(qz)+ Zakﬂ(qu) with Eak =0

k=0
reqular at x = 0 is given by
= Z o o) with At) =D ath
n=0 m: k=0

We apply lemma 2 to staircase polygons, we choose o = y and we get the solution

S(z)=y (T(q.r) — 1) with T(z)= i M

T(z) = (4,995 On

Surprisingly, this works also for directed column-convex polygons:

D(z)=y (E(qx) - 1) with  E(z i y — Dga)" q(g).

E(x) = (4,99, 95 On

M. Bousquet-Mélou [3] found by other means that for column-convex polygons

G(z,y,q) = y%
where
_ zq i —1" (1= )" Uy )a
(1-y)(1-yq) Z( )n V(¥4 On-2(39; %1 (yq; O)n(y” q#z)n_l
and

(=" (1= )" %" (1245 )20y
(6 Dy 0)5-1(¥8 (Y2 G On—a

In [11] we consider simpler models of partially convex polygons as stacks and Ferrers diagrams
(see Fig. 8).

For stacks (s = 2) and Ferrers diagram (s = 1), we obtain a non-alternating g¢-series for the
generating function

[M]e

B =

n

o0

(z,9,q Z z(yq)"

= (rg;9)5-4(1 — 2q™)
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Stacks Ferrers diagrams

FicurEe 8. Typical configurations of stacks and Ferrers diagrams.

and a rational function for the perimeter-generating function

These models are interesting, as they show “pathological behavior”. We have seen that considered
as a function of z, the radius of convergence is a continuous function, while considered as a function
of ¢, it has a jump discontinuity at ¢ = 1 in the generic case for the vesicle models. But in the
generic case we have left continuity at z.(1) whereas for stacks (z.(¢) = 1/¢) there is an isolated
point z.(1)at ¢ =1 (z.(17) =1 > z.(1) > .(1%) = 0). Thus stacks and Ferrers diagram are too
simplified to give a reasonable physical model.
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