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Abstract

The Mellin transform has been used in signal processing as a tool to investigate scale
invariance. We review some of the recent studies by Wornell [3] and Cohen [2].

1. Introduction and examples

Assume we need to classify ships from radar signals [4]. The echo can be more or less compressed,
depending on the angle between the axis of the ship and that of the radar signal. Nevertheless,
one would like to be able to compare several echoes with different extension or compression rate,
in order to decide whether or not they belong to the same kind of ship. A first approach would
be to interpolate the signals, so that they would live on supports of equal size. A second one is
to use some kind of transform that would ignore scale variations. The Mellin transform fulfils
such a requirement; more precisely, the moduli of the Mellin transform of a signal f(z) and of any
dilation of f(z) are the same. If time invariance is furthermore required, one may perform the
Fourier-Mellin transform: Given an original real signal f(z), the analytical signal is defined by
Jo(z) = f(z)+ ifp(z), where f,(z) is the Hilbert transform of f(z). Let F(f,)(w) = F(w) be the

Fourier transform of f,. The quantity
+oo 2

1Gyeya(iz)|” = ‘/ W ()| dw
0

is both shift and scale invariant on the z axis.
Section 2 gives a more detailed description of scale invariant linear systems. Section 3 presents
a general framework for scale analysis.

2. Linear systems

If (t) is the input signal, a linear system outputs y(?) as follows:

W(1) = S(a(1)) = /+°° o(FK (1, 7) dr

where K(t,7) denotes the kernel of the system.
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2.1. Shift invariant systems. As is well known, shift invariant systems are such that:
S(zt—1)=ylt—17)<= K(t,7)=V(t—-1)

where V' is the impulse response of the system, i.e., V() = 5(6(¢)). It follows that y is obtained
by convolving 2 and V:

y(1) = /j: 2PV (L = 7)dr = (2 % V(D).

The eigenfunctions of these systems are the exponential functions: ¢ — €', s € C. The Laplace

transform
+ o0

E(a:)(s):X(s):/ 2(D)e* di

— 00

enables to change convolution into multiplication: L[(z xy)](s) = X (s)Y (s).

2.2. Scale invariant systems. We are now interested in having S(z(¢/7)) = y(¢/7). One can
easily check that this is equivalent to K(¢,7) = aK(at,ar). The system S is characterized by two
lagged impulse responses:

€0 =S -1), €)= 56+ 1)
vy = [ emg T - [ at-ne )

For causal signals and systems with causal response,

dr

- .

y(t) = /0+oo x(r)£+(t/r)(i_—7— = (z o &)(t) (scale convolution).

The kernel K is such that: K(t,7) = &(t/7)/7. The eigenfunctions of the operator thus defined are
the functions ¢ — ¢°. The associated eigenvalue is the Mellin transform:

M(z)(s) = M(s) = /0+°° £(r)r— dr.

We can then write: M[(z ¢ y)](s) = X(s)Y(s). The Mellin transform plays for scale convolution
the role that the Laplace transform plays for ordinary convolution.

Application to scale differential equations. One defines the derivative with respect to the scale by:

. x(et) — x(t)
Vi(z)() =lim ——2——.
(2)(t) = lim ———
If z is differentiable with respect to ¢, V(z)(¢) = ta'(¢). One can check that the derivative with
respect to scale corresponds to a multiplication by s in the Mellin domain.

2.3. Generalized scale invariance. More generally, one considers systems such that S(z(¢/7)) =
72y(t/7). This holds if and only if K({,7) = a~*~Y K (at,ar). For causal signals, the lagged impulse
response £, is such that:

sy = [ e s
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2.4. Jointly time and scale invariant systems. We now wish to have both
S(z(t—1)=y(t—1) and S(a(t/T) = try(t/T).
One can show that the kernel should be a generalized homogeneous function of degree A — 1:
v(t) = a~ P Yy(at)
Hence,
(1) = Chlt)u(t) + Colt| " u(—1), if =\ ¢ N,
Gt () 4 Colt)ru(—1) + C386U (1),  otherwise,

where the C; are constants and u(t) is the Heaviside function.

3. The scale representation

The starting point of this approach [2] is the following simple remark:

— The content of the signal z at time ¢ is nothing but z(t);
— the content of the signal = at frequency f is given by its Fourier transform X(f).

Our purpose is then to define the concept of scale and the content of the signal = at scale ¢. The
idea consists in associating a physical quantity ¢ with an Hermitian operator A. Let us begin with
common physical quantities: time and frequency. The operators 1" and F respectively associated
with ¢ and f are:

T :x(t) — ta(t), F:a(t)— —i(é—f.
In the frequency domain, we obtain:
dX
TiX(f)'—”ﬁa FX(f) = FX().

It should be noticed that T and F do not commute:
[T,F]=TF — FT = 1.

This is the reason why we get an incertitude principle on { and f. We now define the scale operator
as follows:

1
C= §(T F+ FT).
The following relations justify this definition:

e Ca(t) = e"/zx(e”t), eCX(f)= e_"/zx(e_"f).
Whereas
e a(t) =zt + 1), e TX(f)=X(f-0),
[T,C] = TC — CT = T, [T, F] = FC — CF = —iF.

Therefore, there exists an incertitude relation between scale and time, or between scale and fre-
quency:

1
AcAt > 3 |(t)]
where the average time is defined by
(1) = /t|x(t)|2 dt.
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The equality is reached for the signal:

t
z(t) = kt® exp [—ﬁt +i(c)In (@)] .
Dually, we get AfAc > 1[(f)].
Let v(¢,t) be the eigenfunctions of C: Cy(c,t) = ¢y(e,t). We find, for ¢ > 0:

1 .
(e, 1) = —=t"""%.

V2m

We can now produce the direct and inverse transforms, for ¢ > 0:

D(e) = /a:(t)ﬂ,’*(c,t) di = \/%/om ()4 d,
I i ie—1
2(1) = / D(eyy(e 1) de= /0 D(e)i“ de.

One can notice that we have recovered a Mellin transform, in the special case when ®(s) = 3. That
is why the Mellin transform was commonly renamed Scale transform in signal processing.
The average scale of a signal is given by: (¢) = [¢|D(¢)|*de. One obtains
400

= [ wwkora= [ poxmr,

One can deduce from these relations a notion of instantaneous scale, at time &: ¢, = t¢'(t), and

at frequency f: ¢; = —f¢'(f).

A more unified presentation can be found in [1, 2].
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