A grammar-based unification of several alignment and folding algorithms

Fabrice Lefebvre
LIX - Ecole Polytechnique

June 24, 1996

[summary by Pierre Nicodeme]

Abstract
We show that many popular models of folding and/or alignment may be described by a
new formalism: multi-tape S-attribute grammars (MTSAGs). This formalism relieves the
designer of biological models of implementation details. We present also a tool which, given
a MTSAG, will output an efficient parser for this grammar and show that MTSAGs offer a
new, efficient and useful way to handle stochastic context-free grammars. This summary is
an extended abstract of [7].

1. Introduction

We shall see here that most popular models of alignment and/or folding of DNAs, RNAs or
proteins, HMMs (Hidden Markov Models) [5], SCFGs (Stochastic Context-Free Grammars) [8] and
CMs (Covariance Models) [3] share a common representation in terms of a new formalism: Multi-
Tape S-Attribute Grammars (MTSAGs). This formalism is not only a help for the description of
old or new methods. We designed and implemented a tool which, from the high-level description
given by a MTSAG, will automatically generate the C source of an efficient C parser which is able to
compute alignments and foldings. The speed and memory requirements of such generated parsers
stand the comparison with programs manually written from dynamic programming relations. As a
consequence, we show how to automatically build SCFGs from sets of unaligned, unfolded RN As.

2. Definitions

We define a special “m-tape” alphabet which will handle sequence alignments, and then a “m-
tape” extension of context-free grammars which will handle structures of alignments.

DEFINITION 1. A m-lape alphabel ¥ is a product of m alphabets ¥() augmented with the empty
string: ¥ = ®;_; (3@ U {e}). An element a; - --q; of the free monoid X%, generated by formal
concatenation of m-tape elements of Y., is called a m-tape alignment of length [. The empty
alignment of ¥* is denoted by e.

ExaMPLE. (abba,dcd) is a 2-tape input string on ¥(*) = {a, b} and X® = {¢,d}. We shall also
write this 2-tape input string as 4°%¢ which is a somewhat more natural notation in the context
of alignments. This 2-tape input string has a 2-tape input substring %°.

DEFINITION 2. Given any m-tape alignment a; ---a;, we get a m-tape input string by concate-
nation, or e-deletion, of symbols of the projection of a; - - -a; on every tape.

¥ — (X", a - rap — (ag - ap).

23

start — frame0Q (0) ds
framed — frameO § | [:] (0) gg
| frame0o|¥ (2) gg
| framel|%| | frame?[)f] (1)
framel — framel § (1)
| framel| ¥ (3)
| frameo|X |f7“am62[)_(] (3) T
frame2 — frame2 § (1)
| frame2| ¥ (3)
| frameO| % | | framel [)_(] (3)
Ficure 1. In this weighted left-
regular grammar, weights are
written in parentheses after each [

. . tape 1 CCTTCTGTAGCTCAATTGGT C G

group of productions having the O U et 1))
. . lﬂ)e 2 GGAGAGATGGCTGAGT - GGACTAAAGCGTACGA - GTTAA - TCGTACTCTTTCC

same weight. Later on, weights CCCcece oG I (e 1NN

will be turned into attribute eval-
uation functions.

FIGURE 2. Derivation tree of an
alignment of two RNAs.

ExAMPLE. Our 2-tape input string 49%%* may be defined as an e-deletion of the alignments
(Ll [eJLETLe]tan) or (LE]Tal Ll [E] La])-

Searls did show that the alignment of two strings according to some edit-distance may be carried
out by some simple 2-tape nondeterministic finite automaton (NFA) with weighted transitions [9].
The sought alignment has a minimal total weight. The set of alignments recognized by a Searls’
NFA is a regular language over our 2-tape terminal alphabet, and may be described by a regular
grammar with weighted productions (see figure 1).

As regular grammars are a proper subset of context-free grammars, we found natural to generalize
this idea of alignment to m-tape (i.e. the terminal alphabet is a subset of a m-tape alphabet)
context-free grammars (MTCFGs) and their recognizing devices, namely m-tape nondeterministic
pushdown automata (NPDA). Weighted transitions of NFA are easily translated into weighted pop-
transitions of NPDA. The sought alignment is obtained from a sequence of pop-transitions of the
NPDA which has an optimal (minimal for some problems, maximal for others, etc...) total weight.

Figure 2 shows how alignments and structures may be deduced from a single m-tape derivation.
The underlying grammar may be easily recovered. Base pairings are inferred from derivations of
DS (Double-Strand) and they are given below each tape. Notice that a double-strand has been
defined as a substructure whose ends must be paired on at least one tape, whereas a single-strand
(SS) may only have unpaired bases on both tapes.

DEFINITION 3. A m-tape contexi-free grammar G = (Vp,Vy, P,S) consists of a finite set of
terminals Vp such that Vip is a subsel of a m-lape alphabet, a finite set of nonterminals Vi such
that Vy N Vz = (0, a finite set of productions (rewriting rules) P and a start symbol S € Vy. Let
V = Vp U Vy denote the vocabulary of the grammar. Each production in P has the form A — a,
where A € Viy and a € V*. A is the left-hand side of the production and « its right-hand side.

A derivation tree is a planar representation of a sequence of derivations (replacements of a
nonterminals A in a string of V* by strings a such that A — «a) and it is a result of parsing. The
language L(G) is the set of m-tape input strings generated by G: L(G) = {(u) € (V;) | 5 —=* u}.

24

ExampLE. The following toy MTCFG will align two properly parenthesized strings interspersed
with a:

s—[JsP] I e 11 1211 88

In this MTSAG, the structure defined by parentheses must be the same on both tapes, but sub-
strings of @ may be aligned with gaps (denoted by — in terminals instead of €, because a dash is
appropriate, and even expected, in the context of alignments).

DEerINITION 4. Let G = (Vp, Vi, P, S) be a proper m-tape context-free grammar. For every tape
i (1 < < m), define the projected grammar G) as the conversion of the grammar (‘/T(i), Vy, P9 9)
into a proper grammar, where ‘/T(i) and PU) are the sets of values on tape ¢ of all the elements of
Vp and P respectively.

ExaMmPLE. The MTCFG of the preceding example has the same projected grammar on both
tapes :

§S—=(510alS5

Projected grammars are useful for the study of the complexity of our parsing algorithm as a
function of the ambiguity of MTCFGs.

We said earlier that we could assign a cost to each alignment or folding produced by a NPDA,
thanks to weights on pop-transitions. This cost-evaluation step is essential for the determination
of an optimal cost alignment or folding.

We use the general mechanism of synthesized attributes, or S-attributes which, together with
MTCFGs, give us m-tape S-attribute context-free grammars, or MTSAGs. S-attributes are at-
tributes which are assigned to every vertex of a derivation tree and which are computed from the
bottom of a derivation tree (i.e. every terminal has a known S-attribute) to its root by means of
attribute evaluation functions associated to grammar productions. Thanks to these functions, the
computation of the final attribute of the derivation tree does not have to rely on a fixed, prede-
termined, operation (summation, multiplication, ...), as it would have been the case with weighted
productions. In our implementation, attribute evaluation functions are C functions. We have al-
ready shown the effectiveness of S-attributes with our adaptation of the thermodynamic model of
folding to context-free grammars [6]. This algorithm uses a parse table to store the shared forest
of derivation trees of a m-tape input string.

DEFINITION 5. A m-tape S-attribute grammar is denoted by G = (Vp,Vn, P, S, A, S, Fp). It
is an extension of a m-tape context-free grammar G = (Vy, Vi, P, 5), where an attribute z € A is
attached to each symbol X € V and a string of attributes A € A* to each string o € V*. S, is a
function from V;p to A assigning attributes to terminals. Fp is a set of functions from A* to A. A
function f4_., isin Fp iff A — aisin P.

The attribute A of a string « is the concatenation of the attributes of the symbols in . When
a function f4_, is applied to the attribute A of a string o derived from A, it returns the attribute
z of A (hence the bottom-up computation of attributes).

3. Syntax analysis for MTSAGs

A generalization of Cocke-Younger-Kasami’s algorithm (CYK) would be an easy algorithm to
parse m-tape input strings. This algorithm has a time complexity of O(n?®) and a space complexity
of O(n?) when only one tape of size n is considered [1]. A generalization to m tapes, each of size
n, would lead to an algorithm having a complexity of O(2®™) in time and O(n*™) in space.

25

To overcome the limitations of CYK’s algorithm, we generalized our parsing algorithm for 1-tape
MTSAGs [6].

When constructing the parse table, a minimum condition of usefulness is applied. This condition
means that an item is never add to an entry if it has no chance of being used in a derivation tree,
up to the already parsed part of the m-tape input string. This condition is akin to a condition
verified by Earley’s parsing algorithm and it is the key to the lower parsing complexities of our
algorithm when some projections of the underlying MTSAG are unambiguous.

In fact, out algorithm may be considered as an improvement of Earley’s algorithm, where Earley’s
items [A — a - 3,1],(a, 3 € V*) which share the same o and i are factorized into a single item
[A — a,i]. Also, non-kernel items of Earley’s algorithm are replaced by much smaller sets of
expected non-terminals.

PROPOSITION 1 (1-TAPE COMPLEXITY). Let G be a proper 1-tape MTSAG and let r > 1 be the
mazimum number of nonterminals appearing atl the right-hand side of a production of G. For a
tape of length n, the time and space complexities of the previous parsing algorithm are, in order of
decreasing constraints on G':

— Fqual and at most O(n) if G is LR(k) and not right-recursive (this encompasses left-regular
grammars);

— equal and at most O(n?) if G is unambiguous;
— O(n"t) and O(n") for a generic proper MTSAG.

PROPOSITION 2 ("m-TAPE COMPLEXITY). Let G be a proper m-tape MTSAG. The time com-
plexity of our parsing algorithm on G is equal to the product of the parsing complezities of the same
algorithm applied on each tape i with each projected grammar G%). The same kind of result holds
for space complerities. Hence the time complexily is al most O(n™"+Y)) and the space complezity
is at most O(n™"), for m-tapes of size n

In practice, MTSAGs that we used verified r < 2 and thus the time and space complexities of
our parsers for those grammars were respectively O(n*") and O(n?™) at most, but were sometimes
much better.

4. Stochastic Context-Free Grammars

An essential aspect of MTSAGs is the ability to easily generate efflicient parsers from grammars.
On the basis of the tool we had already written to generate parsers from 1-tape S-attribute gram-
mars, we designed a new tool, MTSAG2C, which automatically generates the C source of a parser
from a given MTSAG. The generated parser is able to read tapes (thanks to a lexical analyzer pro-
vided by the user), parse tapes, and then output a single derivation tree which satisfies constraints
given in the MTSAG.

When using 2-tape MTSAGs for SCFGs, we transfer on the first tape the high-level description
of a family of RNAs usually used with SCFGs, and on the second tape the RNA to be folded and
aligned. All rules used by the traditional SCFG generating tool to generate a SCFG from its high
level description are then written down as a single, fixed, MTSAG. This has the additional benefit
of shortening the development cycle (see figure 3b).

We compared the parser generated from a 1-tape version of a 97 nonterminals SCFG (this parser
already proved to be quite fast [6]) to the parser generated from the 2-tape version of this SCFG
(figure 4(a)).

Tests done on an Alpha 2100-500MP give the results:

26

C source of

SCFG generator
) high-level description
C compiler / of structure
SCFG generator
MTSAG
SCFG ,/

MTSAG2C
parser generat
C source of parser high-level description

C source of parser of structure (first tape)
+
RNAs C compiler RNAS (second tape)
{ r

par:

Comparative Analysis ?

N

C compil

NN

Comparative Analysis

—

parse trees
\ parse trees / \ T
alignments ali gnments)
Expectation Maximization Expectation Maximization

FiGure 3. (left) 1-tape MTSAG; (right) 2-tape MTSAG. Development cycle of a
MTSAG implementation of SCFGs. It has been suggested [4] that a comparative
analysis of alignments resulting from parsing may be used to build a new SCFG or
a new high-level description of it. With 2-tape MTSAGs, this kind of feedback is as
easy to implement as the feedback designed for CMs by Eddy and Durbin [3].

1-tape | 2-tape

83 bases tRNA
time in seconds: 0.45 0.33
space in Mbytes: | 1.8 0.9

With MTSAGs you do not have to generate and compile another parser every time you modify the
high-level description of your family (figure 3 (left)). Instead, we may use the following adaptation
of the procedure of Eddy and Durbin to learn their CMs from initially unaligned and unfolded
RNAs:

(1) Use a MTSAG adaptation of any folding algorithm (Sankoff, Zuker) to get a rough (and
even wrong) initial folding. Convert this folding to a suitable first tape (by replacing all
single strands by ’*’ for instance);

(2) Use Dirichlet priors to estimate probabilities;

(3) Align and fold all RNAs with a 2-tape MTSAG;

(4) Optimize probabilities from results of the previous step and repeat the previous step until
probabilities converge;

(5) Use a comparative analysis algorithm on alignments of step 3 to get a new approximation of
the common structural features of all RNAs. Then convert this approximation to a suitable
first tape;

(6) Repeat steps 2 to 6 until the first tape converges.

5. Conclusion

We introduce a new way to describe SCGFs in the form of 2-tape MTSAGs and special first
tapes. This new way alleviates the need for specialized SCFG building tools and for recompilations
of parsers every time the model is changed (only the first tape has to be changed).

MTSAGs may also be applied to most useful sequence analysis methods which were usually
expressed with dynamic programming relations (Smith-Waterman alignment model, global align-
ment, HMMs, simultaneous alignment and folding of RNAs). We believe that MTSAGs should be

27

CCCCCCC . CCCCHmrrkrx)))) (CCCCa et 1))) Hwrkkkrx ((((C..nnnn 2))))))))))).
CCUUCUGUAGCUCAAUUGGUAGAGCAUGUGACUGUAGAGUAUGCGGGUAUCACAGGGUCGCUGGUUCGAUUCCGGCCGGAAGG

(a) unaligned 2-tape input string.
CCCCCCC L COC ek)))) L (CCCCL e 1))) wrkkkokkmm———mmm e *((CCC. ..ot 330
CCUUCUGUAGCUCAAUUGGUAGAGCAUGUGACUGUAGAGUAUGC--GG-GUAUCACAGGGUCGCUGGUUCGAUUCCGGCCGGAAGG
(b) 2-tape alignment of the previous 2-tape input string.

FicGURE 4. Unaligned and aligned version of a 2-tape input string. The first tape of
this 2-tape input-string has a cloverleaf-like structure. This structure has two single
strands which may have a variable length around 8 bases. The second tape is the
RNA DY6050 extracted from a well known freely available compilation of tR-
NAs [10].

used instead of dynamic programming relations because these relations hinder the inventiveness of
designers of new sequence analysis models.

We also gave a sketch of a method to build stochastic models from unaligned, unfolded RNAs.
However, divide and conquer methods may be a prerequisite for long RNAs [2, 4]. We will try to
apply MTSAGs to these methods.

Bibliography

[1] Aho (Alfred V.) and Ullman (Jeffrey D.). — The Theory of Parsing, Translation, and Compiling. —
Prentice-Hall, 1972, vol. 1.

[2] Corpet (Florence) and Michot (Bernard). — RNAlign program: alignment of RNA sequences using
both primary and secondary structures. Computing Applications in the Biosciences, vol. 10, n° 4, 1994,
pp. 389-399.

[3] Eddy (Sean R.) and Durbin (Richard). - RNA sequence analysis using covariance models. Nucleic Acids
Research, vol. 22, n° 11, 1994, pp. 2079-2088.

[4] Grate (Leslie). — Automatic RNA secondary structure determination with stochastic context-free gram-
mars. In Third International Conference on Intelligent Systems for Molecular Biology. pp. 136-144. —
AAAT Press, 1995.

[5] Krogh (A.), Brown (M.), Mian (I. S.), Sjolander (K.), and Haussler (D.). — Hidden Markov models in
computational biology: Applications to protein modeling. Journal of Molecular Biology, vol. 235, 1994,
pp. 1501-1531.

[6] Lefebvre (Fabrice). — An optimized parsing algorithm well suited to RNA folding. In Third International
Conference on Intelligent Systems for Molecular Biology. pp. 222-230. — AAAI Press, 1995.

[7] Lefebvre (Fabrice). — A grammar-based unification of several alignment and folding algorithms. In
Fourth International Conference on Intelligent Systems for Molecular Biology. pp. 143-154. — AAAI
Press, 1996.

[8] Sakakibara (Yasubumi), Brown (Michael), Hughey (Richard), Mian (I. Saira), Sjolander (Kimmen),
Underwood (Rebecca C.), and Haussler (David). — Stochastic context-free grammars for tRNA modeling.
Nucleic Acids Research, vol. 22, 1994, pp. 5112-5120.

[9] Searls (David B.) and Murphy (Kevin P.). — Automata — theoretic models of mutation and alignment.
In Third International Conference on Intelligent Systems for Molecular Biology. pp. 341-349. — AAAI
Press, 1995.

[10] Steinberg (S.), Misch (A.), and Sprinzl (M.). — Compilation of tRNA sequences and sequences of tRNA
genes. Nucleic Acids Research, vol. 21, 1993, pp. 3011-3015.

28

