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Abstract

A famous conjecture in the theory of symmetric functions states that the coefficients of
Macdonald’s polynomials in the basis of Schur’s symmetric functions are positive. F. Berg-
eron, A. M. Garsia and M. Haiman have introduced a linear operator V whose eigenvalues
are related to Macdonald’s polynomials. Properties of this operator in a special case are re-
lated to combinatorial determinants which can be evaluated by the Gessel-Viennot technique
relating them to non-intersecting paths.

1. Introduction to symmetric functions

This section and the following one are based on [4].

Partitions and symmetric functions are strongly related. A partition is an infinite decreasing
sequence of positive integers A = (A1, Ag,...), with finitely many non-zero elements. The index
of the last non-zero element in the partition is called its length and is denoted ¢(X); the sum of
the A;’s is called the weight of the partition and is denoted |A|. For n > £()\), A is identified with
the n-tuple of its first elements. Then if z = (zy,...,,) is a n-tuple of indeterminates, z* denotes
the monomial z}* ---z}» and S denotes a maximal set of distinct permutations of .

A fundamental basis of symmetric functions is constituted by the monomial symmetric functions,

indexed by the partitions: for n > £()),

ma(Ty,...,&,) = E 27,

oES)

Clearly, the set of my’s, when A runs through all partitions of length at most n is a basis of the
symmetric polynomials in n variables. The set A of symmetric functions is defined as the vector
space generated by the m,’s.

Three important sets of symmetric functions, e, = m(,-) (elementary), h, = 37, _, m, (complete)
and p, = m¢,y (power sum), have simple generating functions:

E(t):Ze,tr = 1+t2mi+t2zmimj+--- :H(l—l—mit),

>0 i i<j i>0

H(t) =Y ht" =14tY o+ 1Y wz; +--- =[] 1 —1a:»t’
>0 i i<j i>0 t

P(t):ZprtTIZ%‘Fth?""” = 1_x;.t'
r>0 i g >0 Z
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Each of these three sets of symmetric functions generates A as a ring. In all three cases, defining
for a partition A a function f, = f,, fr, -+, where f is e, h or p yields a basis of A as a vector
space, when A runs through the set of partitions.

Formule giving the coordinates of one of these functions in terms of the other families are
obtained by extracting the coefficient of " in the following straightforward relations between the
generating functions:

(1)
(1) E(t)H( t)_lv P(t)_ H(t)7 P( t)_ E(t)

The last two equations yield the classical Newton formulse between power sums and elementary
symmetric functions. Integrating these equation also yields
r G e, W ! |
H(l) = ,— = — Et) = —IAM= i it - 7!
(1) eXPZP r p’\z,\’ (1) Z( ) p'\z,\’ with X Hl my.,
r>0 A A i>0
where m; is the number of occurrences of the part 7 in A.
Another family of symmetric functions, the Schur functions, is defined for n > ¢(\) by

Cdet(2 ) gijen

Sa L1y, T = -
)\( 1 bl TL) det(x?—])lsiyjsn

The s,’s are indeed polynomials, since the numerator is a polynomial in the z;’s which vanishes
whenever z; = z; with ¢« # j, and thus is a multiple of the Vandermonde determinant in the
denominator. The s, form another basis of A. They are related to the complete and elementary
symmetric functions by the Jacobi-Trudi identities:

(2) sy = det(ha,—ipj)icij<n,  Sx = det(ex—ipj)i<ij<m,

where A is the conjugate of A, i.e. the partition whose Ferrers diagram is the reflexion of that of A
with respect to the diagonal.

Recall that a Young tableau of shape A is a Ferrers diagram of shape A with squares numbered by
consecutive positive integers 1,2, ..., r, the numbers increasing strictly in each column and weakly
along each row. The weight w(T') of a tableau 7' is the r-tuple (m, ..., m,), m; counting the number
of occurrences of 7. The tableau is called standard when it contains each number 1,2,...,|\| exactly
once, i.e. its weight is (11*). The Schur functions are related to tableaux by

sy= 3 2@,
T

summed over all tableaux 7" of shape A. From this follows that the coordinates K,, of s, in the
basis m, are positive integers counting the number of tableaux of shape A and weight  and thus
are positive integers. Macdonald’s conjecture is a generalization of this property.

All these symmetric functions can also be related by expanding in several ways the doubly infinite
product P(z,y) = [I(1 — 2;5;)'. Thus one gets

3 I — - Yozma(@)pa(y) = D ha(@)ma(y) = Y- ma(e)ha(y) = D sa(@)sa(y).

i L= aiy; A A

This motivates the definition of a scalar product by (hy,m,) = 6,, for all partitions A, u, where 65,
is the Kronecker delta. The relations (3) show that the p,’s form an orthogonal basis, while the s,’s
form an orthonormal basis of A. This property characterizes the Schur functions.
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The next step is to consider the Hall-Littlewood symmetric functions with one parameter

P)\(.”El,--.,-fn;t): Z O-(:EAHM)

These functions interpolate between the monomial symmetric functions—obtained when ¢ = 1—and
the Schur symmetric functions—obtained when ¢ = 0. They form a Z[t]-basis of A[t]. Therefore,
one may consider the polynomials K,,(t) defined by

)= Z I(ku(t)Pu(m? t).

The polynomials K, ,(¢) turn out to have positive coeflicients, and this has been proved by Lascoux
and Schiitzenberger who gave an expression of the form

Ku(t) Z (1),

summed over all tableaux T of shape A and weight u, where ¢(7T') is a certain combinatorial function
of the tableau (its charge). Several expansions of the product P(z,y;t) = [; ; (1 — tzyy;)/(1 — z;y;)
lead to results very similar to those obtained above and to the definition of a scalar product on A[t]
with values in Q(¢) with respect to which the Py(z;t) are orthogonal. Also (P, m,) = 0 when g £ A
(the Ferrers diagram of u is not included in that of ), and together with their orthogonality this
characterizes the Py. The basis which is dual to the Schur functions s,(z) with respect to this
scalar product is denoted S, (z;¢), i.e., (Si(z;t),s.(2)) = Oy

2. Macdonald’s conjecture

Macdonald’s conjecture concerns the Macdonald symmetric functions, which have two parame-
ters. The doubly infinite product

123953 ¢) oo - ,
Wz, y;q,t) =[] % where  (a;¢)e = [[ (1 - ag"),
i,j Zy] ’ q [ee] r=0
can be expanded as
£(2) 1— q)\,
(2, y50,0) = o)pa(y),  with  z(g,1) = 2 —.
)\ Z)\ , i1 1 —tH

This motivates the definition of a scalar product by

<p)\7 p,u>q,t = 6>\HZA(Q7 t)

The Macdonald symmetric functions are defined uniquely by two properties: they are orthogonal
with respect to this scalar product and they decompose in the basis of the monomial symmetric
functions as
Py(z;q,t) = my + Z Upp My
B<A

When ¢ = t, they reduce to the Schur functions sy, and when ¢ = 0 to the Hall-Littlewood
functions Py(z;1).

For a partition A and a cell ¢ = (i

be a(¢) = A\; — 7 and its leg to be I(c)

j) of its Ferrers diagram, one defines the arm of ¢ to
A; — 1. Now we can state Macdonald’s conjecture.
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CoNJECTURE 1 (MACDONALD). The coefficients K,,(q,t) of the following decomposition are
polynomials with positive coefficients:

(4) Hi(z;1) := ex(q, O Pa(59,1) = > Kau(g, 1) Sa(51),  where  ex(g, 1) = [J(1 = ¢* @),
A

CEA

These coefficients possess a lot of structure. For instance, for A = (3,1), Eq. (4) becomes
Hg1y= S+ (6 + 1+ @)1 + (L @)gSe2 + (10 +¢° + 84S0 + 16°50,1,0)-

Only special cases of Macdonald’s conjecture have been proved.

3. Combinatorial properties of V when ¢t =1

In order to study the polynomials H,, Bergeron, Garsia and Haiman have introduced a linear
operator V which is diagonal in the basis H,, with eigenvalues T)(¢,1) = ¢"*1**), where n()\) =
> (¢—1)A;. The matrix of V in the Schur basis turns out to have a fascinating structure of which
much is still only conjectured [2].

The aim of [1] is to study this operator in more detail in the special case ¢t = 1. Then the
basis Hx(z;q) := Hx(z;q,1) becomes multiplicative: H(z;q) = fI(Al)(ac;q)fl(,\Q)(x;q) <o« and V
becomes multiplicative too. Thus any identity involving symmetric functions gives rise to a similar
identity for its image by V. In particular, from (2) follows V(s) = det(Vex y;_i)i<i j<m- Moreover,
still when ¢ = 1, the coordinate V(e,)|, of V(e,) on e, is a g-Catalan number C,, with generating
function C'(z) defined by C(z) = 1+ 2C(z)C(zq). Hence D(A) := V(sy)|, = det(Criqj_i)icij<ms
and the idea of [1] is to use the Gessel-Viennot technique [3] to evaluate determinants of this type
for various classes of partitions A. Typical results are summarised in the following theorem.

THEOREM 1.

D((k*))
D((K**2)) = (-1)("F)*+yg

k(k—1)(4k+41 k41 k(k+41)(4k—1
B D((E*H1)) = (1)) g e

(_1)(5)(] 6 ’ 6

k(k+ k—
(k1) (451) g2

bl

k(k—1)(4k+7)
6

k+1], D((k+ 1)) =(-1))q [k + 1],

g [k £ 10k + 2)(0k + 1] + glk + 2)
213] ’

D((k+2)*) = (-1)(3)g

where [k}]:1+q_|_q2_|_+qk—1

Another linear operator diagonal in the basis H, is also studied in [1]. Similar techniques apply
and results of a similar kind are obtained.
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