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In 1742 Goldbach wrote a letter to Euler proposing the study of the sums
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Euler was able to compute all the sums 5, , for p 4+ ¢ < 13, for example
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Then, in 1906, Nielsen gave relations linking the sums 5, , having the same weight w = p 4 ¢.
Hence the 5, , of odd weight are polynomials in the values of zeta, for example
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Many similar identities have then been found or conjectured. Some of them involve multiple zeta
functions; see the papers of Bayley, D. and J. Borwein, De Doelder, Don Zagier, Girgensohn,
Hoffman, Markett.

The authors [1] propose a simple and unifying method that gives most of the known results
about these identities. Furthermore they are able to prove some conjectures. The key idea is to
use a contour integral with a well-chosen kernel.

1. The idea of the authors: a simple case

Let us denote by I(p, ¢) the integral
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where C' is a circle whose radius goes to infinity, and where v is the logarithmic derivative of the
I’ function. Denoting by v the Fuler constant, we have
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Hence, when s tends to a positive integer m, then
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If s tends to 0, we use the relation ¢(s) + v = —1/s + ((2)s — ((3)s* + --- . Hence, by residue
computation the Euler sum 5; , can be expressed as an explicit quantity which is “homogeneous”
of degree 2 in the zeta values.

In the general case the authors consider integrals
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where 7 is a rational function, and £ a suitable kernel. They then obtain numerous results: some
of them were already known, but some of them were only conjectures.

2. A zoo of beautiful identities

The authors obtain the following results.

THEOREM 1 (EULER). Let ¢ be an integer > 2. Then
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THEOREM 2 (EULER, BORWEIN ET AL.). If the weight m = p+ q is odd, then
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where any occurrence of ((1) has to be replaced by 0.

If we then use the symmetry S, , +.5,, = ((p)¢(¢q) + ((p + ¢), we obtain
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THEOREM 3 (BORWEIN ET AL.). The following relations hold.
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THEOREM 4. Ift+j+ k isodd, withi>1, 7> 1, k> 1, then
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The summations are over the indices > 0. One has to replace ((0) by —3, and ((1) by 0.
COROLLARY 1 (BORWEIN AND GIRGENSOHN). Let ¢ > 1. If the weight a + b + ¢ is even, the

triple zeta function ((a,b,¢) =3 0 cn.cn, momsee can be reduced to linear Euler sums.
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THEOREM 5. (i) The cubic expression .., (h;’;) - 3> .51 % can be expressed in terms of
the zeta values, for any weight.

(it) For even weights, Y .., (fi’;)a can be computed in terms of S5 ;41 and polynomials in the zeta
values.

As a consequence, this gives a proof of conjectures of Bailey, Borwein and Girgensohn:
COROLLARY 2. We have
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3. Other relations?

If the reader wants to discover other relations, including relations on alternating Euler sums,
read the details of the proofs, check that he was able to discover tricky integration contours, or
know where some of these relations naturally occur in theoretical computer science, he should read
this very nice paper. He will certainly enjoy it.
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