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Abstract

The study of the asymptotics of the number of partitions of integers under various
constraints is a very rich area initiated by two papers of Hardy and Ramanujan. Some of
this literature is surveyed here.

If0o < Ay <Ay <--- < A, are positive integers, their sum n = Ay 4+ Ay +-- -4+ A, is called a partition
of n into v summands (or parts). The number of partitions of n is denoted p(n) or p,. When there
is no constraint on the A;, it is easy to see that the generating function of the p,’s satisfies the
following identity due to Euler:
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Euler’s pentagonal theorem also gives a formula for the reciprocal of this generating function:
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This last relation yields a simple way to compute the number p, by recurrence. Numerous other
relations on partitions and their congruence properties can be derived from identities on generating
functions. See in particular [1].

1. Origins

The asymptotic analysis of the generating function P(q) is very difficult. There are singularities
at all roots of unity, which implies that the circle of convergence is a natural boundary. It can be
proved that a saddle-point method applies. The coeflicient p, is given by the contour integral

1 [P
= — d
Pn = Sin /7 gntl %

and the main contribution comes from the neighbourhood of 1, which yields

2) e (\/?) .

Then the next contribution comes from the neighbourhood of —1, then from the neighbourhood
of exp(£2i7/3), etc. Thus the contour of integration has to go through an infinity of saddle-points,
whose contribution to the integral have to be estimated. It turns out that these contributions
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are related by a modular transform. For, the generating function P(¢) is related to Dedekind’s 7

function:
ei?rr/ 12

— z7rr/12 2z7rmr — .
77 H P(eiwr)

=1

The final result is the following theorem [9]

THEOREM 1. The number p(n) of partitions satisfies

= XV:AQ’Q/}(] + O(n_1/4)7
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and w, , s a certain 24qth root of unity.

where

This result is very precise: since the O() term tends to 0 and the number p(n) is an integer, it is
sufficient to consider finitely many terms of this asymptotic expansion to compute the exact value
of p(n). In practice, the number of necessary terms is quite small. Theorem 1 has been refined
by H. Rademacher [15] to obtain a full asymptotic expansion which is convergent. Other special
types of partitions have been treated the same way. All these works rely on the theory of modular
functions.

Wright followed the way opened by Hardy et Ramanujan in several works [20, 21, 22]. For
instance, he studied the asymptotics of plane partitions, with generating function

1
P lane(n) qn = EEEYAY
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The result has the following form

K
pplane(n) ~ 25/36 exp <C7Z2/3)

which should be compared to (2) for ordinary partitions.
All these results are obtained by a saddle-point method combined with a Mellin transform.

2. Mahler’s partition problem

In [12] Mahler studies the partitions whose summands are constrained to be powers of some
integer r > 2. In that case, the generating function becomes

I 1 = X" = P(0).

Mabhler computes an expansion of log p,.(n), whose error term is a O(1). This expansion shows that
pr(n) is essentially of order exp(log® n/2logr). The basic tool is a functional equation

fiz+w) - f(2)

w

= f(qz), with ¢ = 1/7.

The result was improved by de Bruijn [5], using a Mellin transform approach to the logarithm,
followed with a saddle-point method. Besides, in de Bruijn’s work, » > 1 can be any real number

84



and Mahler’s error term is expressed as the sum of an oscillating series. This oscillating behaviour
is studied in more detail by Erdés and Richmond in [7, 16].

3. Saddle-point method

It it quite lucky that in the case of unrestricted ordinary partitions the whole computation
provides an asymptotic convergent series. If one adds constraints on the summands of the partitions
it is in general not possible anymore to derive a convergent asymptotic estimate of this form. In
these cases, only the saddle-point close to 1 is considered and its contribution to the integral is
often itself an infinite sum.

Meinardus [1, 13] gives some general conditions which ensure that the saddle-point method works.
He considers a generating function

H 1

ST

where the numbers a,, are real nonnegative, and the conditions concern the Dirichlet series D(s) =
> r>1 @r/k*, which extends as a meromorphic function to the left of its abscissa of convergence.

Roth and Szekeres [18] study a generating function

I +4¢™).

E>1

They assume the limit s = lim;_ ., log A, /log k exists, and use some arithmetical conditions on the
summands A;. Their result was extended by Richmond [17], who gives several sets of conditions.
As an example, Roth and Szekeres give the following expansion for the number of partitions into
distinct prime summands,

1 \/7 / ( <1og log n) >
og qprlme 1 og n log n .

The works of Meinardus and of Roth and Szekeres use the saddle-point method. The differences
between them is rather a matter of style. Meinardus studies the behaviour of the generating function
in the neighborhood of 1 using a Mellin transform; this gives an approximate saddle-point equation
and an approximate saddle-point; next the Cauchy integral is studied. Roth and Szekeres directly
use the saddle-point method and their result is expressed in an implicit manner; every application
needs an auxiliary computation, in some cases with the Euler-McLaurin formula or with the Mellin
transform, to obtain an explicit expansion.

4. Tauberian method

In [10], Ingham asks for a set of conditions not highly extravagant which leads to a result about
the asymptotic behaviour of the number of partitions. He considers a sequence of real numbers 0 <
AL < Ay < --- < A < --- and its count function A(u) = |[{A¢; Ax < u}|. The use of this function is
natural because the generating function

P(e™) = H e,\ks Zp e

k21

and the count function are related by

+o0
logP(e™") = / log
0
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Under the hypothesis

A(u) = Bu® + R(u), / Mdv = blogu+ c+ o(1),
0 u

v — 00
he proves that
Py(u) ~ Kule=1/20=0=1 2 axp(Cu®), with a = /(8 + 1),

for some explicit constants & and C'. Here the function P,(u) generalises the function p(n) we used
previously; precisely, if P(u) is the number of solutions in nonnegative integers of the inequation
niAL+naAa+ -+ 0. A 4 -+ - < u then for positive h, Py(u) = [P(w+ h) — P(h)]/h. Henceif h =1
and the summands A are integers, P,(n) is simply p(n). The function P(u) already appears in the
work of Mahler, because it satisfies the equations p(rm) = P(m+0) and P(u)— P(u—1) = P(u/r)
in that case.

The proof relies on a special Tauberian theorem. Indeed, the generating function appears to be
a Laplace transform,

Ple?) = /Ooo e dP(u).

The Tauberian theorem of Ingham provides an estimate of P(u) in terms of ¢(s) = log P(e™*) and
the solution o, of the equation ¢'(o,) + v = 0 (which can be seen as a saddle-point equation).

The proof of Ingham works for P(u) without any further condition, but for P,(u) one of the
hypotheses is the monotonicity of this function. Auluck and Haselgrove [2] have extended the
result of Ingham, and removed some of his hypotheses. Bateman and Erdds [3] have shown that
for integer summands A; the function p(n) = Pi(n) is monotonic if and only the set of summands
has the following property: there are at least two A’s and if one removes any A the remaining A’s
have greatest common divisor unity.

5. Weak results
Hardy and Ramanujan [8] study the number Q(z) of solutions of the inequation
2(123(135(15 .. .pal’ e S T

into integers satisfying a» > ag > --- > a, > ---. The numbers 2, 3, ..., p, ... are the prime
numbers. If A, is the sum of the logarithms of the k first prime numbers, Q(z) is essentially
P(log z). They prove that

27 log x
1 = —y/— 1).
OgQ(x):c—»oo \/§ loglogx + 0( )
Such a result, which gives an equivalent of log P(u), is called a weak result.
The tools used by Hardy and Ramanujan is a Tauberian theorem; under some simple conditions
this theorem says that

log A, = B0+ [1oghl+e) g
if the behaviour near 0 of the logarithm of the Laplace transform
f(s) = Zane_z"s = / e dA(s)
n>1 0

is known, namely

_ A
s—0 g logﬁ(l/s).
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In these formulae A, is the summatory function
A, =a;+ay+ -+ a,, A(z)=A, forn<z<n+l.

The result is applied to the generating function

1
Ple) =] ——
i1 1 — e 2
which satisfies
2
logP(e™*) =

s—0 6slog(1/s)’
with £, = logn.
Brigham [4] extends the work of Hardy and Ramanujan, by considering the generating function

P = Il =

k>1
and the following hypothesis about the count function

u) = Z T Ku®log” u, a > 0.

k<u

Two students of Bateman, Kohlbecker [11] first, and Parameswaran [14] next, consider the func-
tional relation between the count function A(u) and the summatory function P(u),

log / e dP(u / log 7——— dA(u).
6 sUu

Kohlbecker shows the following behaviours are equivalent
A(u) ~ u®L(w), log P(u) ~ u®/0+*) L* (u), (a>0).

The function L(u) and L*(u) are slowly varying, that is L(cu) ~ L(u) for every ¢ > 0. Moreover
(L, L*) is a dual pair; in every concrete case, L*(u) is explicitely computable from L(u). The way
from P(u) to A(u) is an Abelian theorem, and the way form A(u) to P(u) is a Tauberian theorem,
like in the work of Hardy and Ramanujan.

Schwarz [19] gives a result which is surprising by its simplicity. The count function A(u) tends
to infinity (as we assumed in all preceding assertions) and satisfies A(2u) = O(A(u)) as u — oc.
Under this hypothesis the behaviour of log P(u) is given by

log P(u) o o(oy) + uo, + O (uau \/¢(Uu) log ¢(2u)) ;

where o, is the solution of the equation qb(a) + u = 0 for u large, and

B ¢”(O’)
Elog e)\ko’ (o) = |¢/(0)]2

k>1

Schwarz gives a host of examples: ordinary partitions, A\, = k, A(u) ~ wu; partitions into prime
numbers, A\, = pr, A(u) ~ u/logu; partitions into rth powers, A, = k", A(u) u/"; Mahler parti-
tions, Ay = r¥, A(u) ~ log, u; partitions whose summands are A\, = k* or k!, A(u) ~ log u/ loglog u,
for example.
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Conclusion

There is a wealth of papers on this subject. Parameters of partitions such as the number of
summands can also be treated by the same kind of subject, although the computations are generally
more technical. This is the problem that started Ph. Dumas in this domain, see [6] for details.
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