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Abstract
It is well known that the general problem of checking the satisfiability of a set of clauses is
NP-complete. Experimentations have shown that there is a threshold on the ratio “number
of clauses/number of variables” that separates the set of clauses for which a solution can be
(easily) found from those for which it is impossible to find a solution. The subject of this
talk is the r-SAT problem, in which the clauses have a constant number r of literals. This
summary is based on [2].

1. The problem

A literal is either a boolean variable z; or its negation z;. A clause is a disjunction of literals over
a set of boolean variables; for example z; Vx5V T3V 24V T3 is a clause on the literals z,,...,z5. A
formula is a finite set of clauses, or equivalently a conjunction of clauses. The satisfiability problem
is to determine whether there exists a truth assignment (each literal is assigned a value true or
false) satisfying a given formula. This famous problem is NP-complete as soon as the number n of
literals is at least equal to 3; it was the first problem to be proved so [3, 4].

If we cannot find an algorithm that is guaranteed to work in polynomial time (worst-case com-
plexity), what about the average complexity? This natural question leads to the notion of random
clauses. The first point is to define a model of random clauses, i.e. a probability law on the set of
all possible clauses on n literals. Two approaches have been attempted (in both, clauses are chosen
independently of each other):

(1) Constant density: The literal z; is present in a clause with probability p;, its negation z; is
present with probability ¢;, and the probability that neither z; nor z; are present is equal
tol—pi—¢.

(2) Constant length: The problem is restricted to all clauses of given length r; there are C' =
2" (:f) such clauses, and the probability distribution on this set is uniform: Fach clause is
chosen with a probability 1/C.

We choose m clauses amongst C', with replacement. The first model leads to clauses of variable
length; an easy analysis shows that, when the number m of clauses and the number n of variables
are polynomially related, almost every formula is satisfiable.

The model under active study is the second one, the so-called r-SAT problem. Simulations have
shown the importance of the ratio ¢, = Number of clauses/Number of variables: If ¢, is smaller
than some threshold value, the probability of finding an assignment of the variables that satisfies
the formula is close to 1 for n,m — +4o00; if ¢, is larger than this threshold, the probability of
finding an assignment that satisfies the set of clauses is close to 0 for n,m — 4+00. This threshold
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is an increasing function of r; experiments lead to believe that the value for r = 3 is p = 4.25...
Moreover, the backtracking algorithms used to solve r-SAT behave differently according to the ratio
¢.. Experimentally, the difficulty of either finding an assignment satisfying a formula or proving
that a formula is unsatisfiable is exponentially greater when ¢, is close to the threshold than when
it is either lower or greater.

The theoretical proof of the existence of a threshold value for the ratio ¢, = n/m lags behind.
For 3-SAT, the best lower bound presently is 3.003, and the best upper bound is 4.64... (a result
established precisely by Dubois and Boufkhad, and presented in this talk). There remains a gap
between 3.003 and 4.64..., around the observed threshold 4.25.

2. The result

The main result is as follows:

A random 7r-SAT formula (r > 3) is unsatisfiable with probability asymptotically
close to 1, when n — 400, as soon as ¢, := m/n is at least equal to some specified
value ¢, .

This lower bound ¢, ,,;, is defined in terms of the solution z, of a transcendental equation, and
can be computed numerically with the help of a Computer Algebra System. For r = 3, we get
xg = 1.924714266..., which gives the bound ¢, < 4.642476157...

For r > 4, the bound obtained by Dubois and Boufkhad improves on the general upper bound
¢, < —log2/log(l —27"). For example, with = 4, some minutes of experiment with Maple give
g = 2.69945696.... and ¢4 < 10.2168796..., which is a slight improvement on the known bound ¢, <
—log2/log(1—27") = 10.74005367... For r = 5, we obtained z, = 3.429641... and ¢, < 21.32022...,
which is still slightly better than the known bound ¢, < —log2/log(1 — 27") = 21.83230235... For
r = 10, the known bound gives ¢, < 709.436..., and Dubois’s method gives zq = 6.92993239... and
¢, < 708.935... These computations also show that the gain becomes marginal for large r. However,
experiments seem to indicate that the difference between the bound —log2/log(1 —27") and the
threshold is slowly varying, and that the accuracy of the bound of Dubois and Boufkhad actually
increases.

3. The proof

The proof relies on the existence of a special type of solutions, called negatively prime solutions
(NPS), which are defined below, and to which is applied the method of the first moment. The idea
behind this method is simple. To show that some problem has no solution, define X as the number
of solutions of a random instance and show that the expectation E[X] can be made as close to 0
as desired. This argument, applied to the r-SAT problem, leads to the following reasoning:

Show that every satisfiable formula has at least one NPS (easy). The average number of
NPS of a satisfiable formula is then at least 1.

Compute the expectation E[NPS] of the number of NPS on the set of random formule with
n variables and m clauses.

If E[NPS] = 0 then a random formula has no negatively prime solution, hence no solution.
Then we should compute E[NPS] and study its asymptotic behaviour as n, m — +o0o0 with
n/m=ec,.

3.1. Negatively prime solutions. A solution of a formula F' is defined as a set of n literals,
each variable appearing either as x; or as z;, such that the assignment of true to these literals
satisfies F. A negatively prime solution is a solution such that, if we substitute z; for a negative
literal z;, the resulting set is no longer a solution of F.
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It is easy to see that each solution of F either is a NPS, or leads to a NPS (by inverting negative
literals as long as possible). Thus the number of solutions of F' is greater than or equal to the
number of negatively prime solutions; the same holds for expectations, and the method of the first
moment, when applied to the number of NPS, will give a better bound than when applied to the
number of solutions, as for example in [1, 5].

It is possible to define a positively prime solution (PPS) in a similar way (an assignment minimal
for the substitution of z; to z;); as F[NPS] = E[PPS], the bound obtained is exactly the same.

3.2. The expectation E[NPS]|. Dubois and Boufkhad show that

N
EINPS] = ) 2 (?) (”?)u S;i (%) (27— 1— )i,
0<i<j<n J

In this formula, 5;; is a Stirling number of second kind: 5;; is the number of ways to partition a
set of j elements into ¢ nonempty subsets.

In passing, they also remark that for any set of literals {l;,i = 1,...,n} (l; = z; or l; = &;),
there exists at least one formula thatl has this set as a NPS.

The next step is to get an upper bound on F[NPS], using a bound on Stirling numbers due to
Temme [6]:

27 —r—1
2r
with A defined as the maximum of some function. The first term of the r.h.s. is o(1) when
n — 4oo; the behaviour of the second term (and of the upper bound) is given by A”. Then a
concavity argument is used to prove that A < 1 for ¢, greater than a value ¢, ,,;, that can be
precisely defined. This shows that, for m/n > ¢, pin, E[NPS] — 0, i.e. a random formula cannot

be satisfied.

This approach does not give any information for m/n < ¢, ,;,; however a closer analysis (done
by the authors, but not presented in [2]) shows that E[NPS] > Q(n)A”, with a polynomial factor
Q(n), and the same exponential basis A; hence E[NPS] is of exponential order A™.

EINPS] < ( ) T + e, V22 AN (1 + o(1)),
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