Creative Telescoping and Applications

Frédéric Chyzak
INRIA Rocquencourt

January 15, 1996

[summary by Bruno Salvy]

Abstract
Creative telescoping is a method to compute definite sums and integrals. Numerous ex-

amples are given, together with an introduction to algorithmic techniques based on Grobner
bases of linear operators.

Creative telescoping applies to solutions of systems of linear recurrences and linear differential
equations. It yields a linear recurrence or differential equation satisfied by the definite sum or inte-
gral of the solutions. It can be used to “compute” generating functions, to extract their coefficients,
and to prove identities.

1. Examples

A typical example is the sum 5, = >;_, (Z) One starts with a system of equations defining the
summand:

Au:=(n+1—k)upp1 s — (n+ Du, =0, Bu = (k+ 1)uy p41 — (0 — k)u, ;, = 0.

The aim is to derive a recurrence satisfied by 5, from these equations. This is done by first finding
an equation satisfied by u, , where k does not appear in the coefficients. Such an equation is given
by Pascal’s triangle rule u,41 41 = Un k41 + Uy, Which can be deduced from the above equations
as (Sy+1)A+5,B, where S (resp. 5,) denotes the shift with respect to k (resp. n). This equation
is then rewritten in a form suitable for summation with respect to k:

(un+1,k+1 - un+1,k) - (un,k+1 - un,k) + un+1,k - 2un,k = 0.

Since the binomial coeflicient (Z) is 0 when k£ < 0 or £ > n, summing over k simply yields the desired

result S, — 25, = 0 (this is where telescoping takes place). Using the initial condition S, = 1,
any solver of recurrence equations would then produce 5, = 2".

A similar example is provided by U, = > 1_, (2)2 The system of equations is a simple modifica-
tion of the former one. Finding an equation which does not involve k in the coefficients is slightly

harder. One finds
(n4+ Dtpyo pro — (204 3)tpy1 ppa + (0 4+ D)ty g2 — (204 3)Upgr gy1 — 2(n + D)y g1 + unp = 0.

Again, this is rewritten in a form where telescoping will take place by repeatedly expressing vy 41 =
(Vk41 — vr) + vp. Summing then yields

(n+ 1)Upy1 —2(2n+ 1)U, = 0.
Again, with the initial condition Uy = 1, it is easy to conclude that U, = (2”)

n
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Exactly the same computation applies to definite integrals. For instance, to compute F(z) =
fjf: exp(—zy?) dy, one starts from a system satisfied by the integrand

D,+y* =0, D, +2zy =0,

where D, denotes differentiation with respect to z (and similarly for D,). Then we look for an
equation satisfied by f without y in the coefficients. It is not difficult to find that such an equation
is (D; 4+ 42°D, 4 2z)f = 0. Since for any value of z, exp(—zy”) and its derivatives with respect
to y tend to 0 at oo, integrating this equation over y yields 4zF'(z) 4+ 2z F(z) = 0. The initial

condition F(1) = /7 leads to F(z) = /7 /x.

2. Ore algebras

A very natural framework to describe creative telescoping is provided by a special case of skew
polynomial rings called Ore algebras. These are algebras of linear operators which generalize the
difference and differential operators.

DerINITION 1. Let K be a (possibly skew) field. Let 0;,...,0, be defined by the following
commutation rules with all the elements P in A = K(z1,...,2,)[y1,..., ¥,

0P = 0i(P)0; + 6;(P),

where o; is a ring endomorphism of A and §; is an additive endomorphism which satisfies the
following Leibniz rule:

0;(ab) = 0;(a)é;(b) + 6;(a)b, Va,b € A.
Then K(zy,...,2p)[Y1,...,9,](01,...,0,) is called an Ore algebra.

Examples of Ore operators are given in Table 1. These can be combined in an algebra where
each operator acts on a different variable. For instance, the Jacobi polynomials P{*#)(z) can be
described in Q(a, 8, z,n)(S,, D;) by a linear differential equation and a linear recurrence.

More complicated examples arise when one of the d; has a special commutation rule with several
of the commutative variables. For instance, in Q(n,q,q")(S\?), the g-shift operator satisfies the
following commutation rule:

S (g = ¢ (n+ 1)1 (¢ 5.

In this framework, creative telescoping becomes an elimination process. Given a set of operators

generating an ideal of operators which vanish on the function we want to sum or integrate, the main

Operator 0 o(a) 6(a) Commutation Action of 0
Differentiation a(x) a'(z) Jr=20+1 f(z)— f'(z)

Shift a(z +1) 0 dr = (z+1)0 fl@)— flz+1)
Difference alz+1) alz+1)—a(z) dz=(r+1)0+1 fle)— f(z+1)— f(z)
¢-Dilation a(qz) 0 0r = qzd f(z)— f(qx)

g-Difference a(qz) a(qr) —a(z) Oz =qxd+(¢— 1z f(z)— f(qz)— f(z)
g-Differentiation a(qz) % Or =qrd+1 f(z) — f(g;rz—lﬁx)
Eulerian operator a(x) za(z) Jr =20+ f(z)—af'(z)
e'-Differentiation a(x) ra(z) Jr=z0+z J() — f'(1) (z =€)

Mahlerian operator  a(z”) 0 Jxr = 270 f(z) — f(aP) (p>2)

TaABLE 1. Ore operators
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step of creative telescoping asks for an operator in the ideal that does not involve the variable with
respect to which we want to integrate or sum. It turns out that under mild conditions on the o;’s
and §;’s, Ore algebras are Noetherian and an extension of Buchberger’s algorithm can be used to
compute Grobner bases. The elimination necessary for creative telescoping can thus be performed
automatically provided we have a good description of the ideal.

Given an ideal 7 and an operator 9 of the Ore algebra O = K[z, ...,2,](01,...,0;), let x be
those elements of {z,...,2z,} which commute with 9. The first step of creative telescoping is
therefore to find a basis of the ideal J = Z N K[x]|(d,,...,0) by elimination. The elements of J
can be written

(1) A+ B,

where B does not involve 0. Since this is an element of 7, it cancels whatever function f the ideal
T was cancelling. Now assuming Af to be 0 on the “borders” of the domain, multiplying by 9~*
shows that B is the result we are after (see [2] for a more rigourous description and the application
to indefinite operations).

3. More examples

The computation of Grébner bases of Ore algebras has been implemented by F. Chyzak in his
Mgfun Maple package available at the URL http://www-rocq.inria.fr/algo/. We now illustrate
some uses of this package.

3.1. Generating Function of the Jacobi Polynomials. The idea is first to define operators
annihilating P{*#)(2)y" and then to compute the sum over n by creative telescoping.
We start with two operators in D, and S, annihilating P{*#)(z) (omitted here for space reasons):

G:=[...,...]:

We then load the package and define the Ore algebra in which this computation will take place.
with(Mgfun):

A:=orealg(diff=[Dx,x],diff=[Dy,y],shift=[Sn,n],comm=[alpha,betal):

This expresses that there are two variables with a differentiation-like commutation rule, one variable
with a shift-like commutation rule and two commutative variables. From the operators annihilat-
ing P{*P)(z), it is easy to derive operators annihilating P{*?)(z)y":

G:=map (primpart ,map(numer, [op(subs(Sn=Sn/y,G)),y*Dy-nl), [Sn,Dx,Dy]):

Then we are ready for elimination: we create an appropriate term order and then compute a
Grébner basis with respect to it:

T:=termorder(A,lexdeg=[[n], [Sn,Dx,Dy]]):

GB:=gbasis(G,T,ratpoly(rational, [x,y,alpha,betal)):

We finally select those operators in this basis which do not involve n, and sum over n, which is
equivalent to taking the remainder of the division by A,:

subs(Sn=1,remove(has,GB,n)):

The computation has taken 17 seconds (on a Dec Alpha). After a further fast Grébner basis
computation, the result is reduced to a system of two equations, a large one of order 2 in D, and
another one linear in D, and D,. It is then possible to interact with a differential equation solver
and, using the initial conditions, obtain the closed-form formula

1
Flz,y)= R=+1-2zy+ 9>

R(1—-y+ R)*(1+y+ R)Y’
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3.2. ¢-Dixon identity. The aim is to show that

K (3ht1 +b b+c a+c a+b+ec
p e e - .
@ zk:( Ve atk) \b+k) \etk) ~\ abe )

The algebra is Q(q, ¢, ¢°, ¢°, ¢*)(Sa, S, 5., S%) which has only ¢-shift operators:

A:=orealg(comm=[q],qshift=[Sa,qa,q] ,qshift=[Sb,qb,q],
gshift=[Sc,qc,q],qshift=[Sk,qk,q]l):

The operators defining the summand are all of order 1 and can be obtained in Mgfun by

G:=subs([q~a=qa,q b=qb,q c=qc,q k=qk], hypergeomtoholon((-1) “kxq~ (k*(3*k+1)/2)
*gbinomial (a+b,a+k)*gbinomial (a+c,c+k)*gbinomial (b+c,b+k),A)):

Then we eliminate ¢* and proceed with the telescoping:

T:=termorder(A,lexdeg=[[qk], [Sa,Sb,Sc,Skl]):
GB:=gbasis(G,T,ratpoly(rational, [q,a,b,c,qa,qb,qcl)):
CT:=subs(Sk=1,remove(has,GB, [k,qk])):

This yields a system of operators symmetrical in a, b, ¢. Using one more Grébner basis computation,
one obtains an operator involving only §,. By symmetry similar operatorsin Sy and .S, can be found.
Then checking that the right-hand side of (2) satisfies these equations and that sufficiently many
initial condition coincide proves the identity. It is also possible to use Abramov and Petkovsek’s
g-version of Petkovsek’s algorithm to find the right-hand side.

4. Takayama’s algorithm

The computation of A and B in (1) is slightly more than what is strictly necessary. Actually we
only need to compute B. N. Takayama gave an algorithm for doing so in the Weyl algebra, and
this algorithm generalizes to Ore algebras.

The idea is that it is possible to throw away all the right multiples of 0 during the computation
as long as we know they will only be multiplied by polynomials which commute with ¢ during later
computations (so that they will remain right multiples of d). This is done by working in increasingly
large modules where multiplication by the z;’s which do not commute with 9 is forbidden. The
operator d can then easily be eliminated in a preprocessing phase.

This results in an algorithm which is generally faster than the general one, but which is only
guaranteed to terminate when there is an element free of the undesirable variables in the ideal.
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