Lecture Hall Partitions

Mireille Bousquet-Mélou LaBRI, Unversité de Bordeaux 1

February 26, 1996

[summary by Dominique Gouyou-Beauchamps]

Abstract

A well-known theorem of Euler [2, Chap. 16] says that the number of partitions of an integer N into distinct parts is equal to the number of partitions of N into odd parts. The talk gives a finite version of this theorem that says that the number of "lecture hall partitions of length n" of N equals the number of partitions of N into small odd parts: $1, 3, 5, \ldots, 2n-1$. This work is a common work with Kimmo Eriksson [1].

1. Lecture hall partitions

Let \mathcal{D} be the set of integer partitions with distinct parts. For $n \geq 1$, let \mathcal{L}_n be the following set of partitions (having possibly some empty parts):

$$\mathcal{L}_n = \{(\lambda_1, \dots, \lambda_n) : 0 \le \lambda_1/1 \le \lambda_2/2 \le \dots \le \lambda_n/n\}.$$

We call the members of \mathcal{L}_n lecture hall partitions of length n, since they describe all possible ways of designing a lecture hall with space for up to n rows of seats placed on integer heights, such that at every seat there is a clear view of the speaker without obstruction from the seats in front (Figure 1).

Removing the empty parts puts \mathcal{L}_n in one-to-one correspondence with the following subset of \mathcal{D} :

$$\mathcal{D}_n = \left\{ (\mu_1, \mu_2, \dots, \mu_m) : m \le n \text{ and } 0 < \frac{\mu_1}{n - m + 1} \le \frac{\mu_2}{n - m + 2} \le \dots \le \frac{\mu_m}{n} \right\}.$$

We will prove the following remarkable theorem.

Theorem 1 (Lecture Hall Theorem). The generating function for lecture hall partitions of length n is

$$L_n(q) = \sum_{\lambda \in \mathcal{L}_n} q^{|\lambda|} = \prod_{i=0}^{n-1} \frac{1}{1 - q^{2i+1}},$$

where the weight $|\lambda|$ of a partition $\lambda = (\lambda_1, \dots, \lambda_m)$ is $\lambda_1 + \dots + \lambda_m$.

Equivalently, the generating function for the partitions of \mathcal{D}_n is $L_n(q)$. Observe that $\mathcal{D}_n \subset \mathcal{D}_{n+1}$ and $\mathcal{D} = \lim_{n \to \infty} \mathcal{D}_n$, so in the limit this theorem yields the familiar Euler identity [2, Chap. 16]: the generating function for the elements of \mathcal{D} is equal to the generating function for the elements of \mathcal{O} , the set of integer partitions with odd parts:

$$\sum_{\mu \in \mathcal{D}} q^{|\mu|} = \prod_{i \ge 1} (1 + q^i) = \prod_{i \ge 1} \frac{1 - q^{2i}}{1 - q^i} = \prod_{i \ge 0} \frac{1}{1 - q^{2i+1}} = \sum_{\mu \in \mathcal{O}} q^{|\mu|}.$$

FIGURE 1. The design of a lecture hall of four rows corresponding to the lecture hall partition (1,2,4,6).

We will prove a refinement of the Lecture Hall Theorem. We define the *even* and *odd* weights $|\lambda|_e$ and $|\lambda|_o$ of a partition $\lambda = (\lambda_1, \ldots, \lambda_n)$ by

$$|\lambda|_e = \sum_{0 \le k \le \lfloor (n-1)/2 \rfloor} \lambda_{n-2k}$$
 and $|\lambda|_o = \sum_{0 \le k \le \lfloor n/2 \rfloor - 1} \lambda_{n-2k-1}$.

Of course, $|\lambda| = |\lambda|_e + |\lambda|_o$. We will prove the bivariate identity

$$\sum_{\lambda \in \mathcal{L}_n} x^{|\lambda|_e} y^{|\lambda|_e} = \prod_{i=0}^{n-1} \frac{1}{1 - x^{i+1} y^i}.$$

This identity is a corollary of Theorem 3 in section 4, taking k = l = 2.

We will in fact discuss a generalization to other sets of partitions of the form $\{(\lambda_1, \lambda_2, \ldots, \lambda_n) : 0 \le \lambda_1/a_1 \le \lambda_2/a_2 \le \cdots \le \lambda_n/a_n\}$ where (a_1, a_2, \ldots, a_n) is a given non-decreasing sequence of integers. We define now \mathcal{L}_n and $S_{(a_1, a_2, \ldots, a_n)}$ as:

$$\mathcal{L}_n = \{(\lambda_1, \dots, \lambda_n) : 0 \leq \lambda_1/a_1 \leq \lambda_2/a_2 \leq \dots \leq \lambda_n/a_n\} \quad \text{and} \quad S_{(a_1, a_2, \dots, a_n)} = \sum_{\lambda \in \mathcal{L}_n} q^{|\lambda|}.$$

Here are surprisingly simple values of $S_{(a_1,a_2,\ldots,a_n)}$:

$$S_{1,2,5,8} = \frac{1}{(1-q)(1-q^3)(1-q^8)(1-q^{13})},$$

$$S_{1,2,5,8,19} = \frac{1}{(1-q)(1-q^4)(1-q^7)(1-q^{11})(1-q^{27})},$$

$$S_{1,2,5,8,19,30} = \frac{1}{(1-q)(1-q^3)(1-q^8)(1-q^{13})(1-q^{31})(1-q^{49})},$$

$$S_{1,2,7,12,41} = \frac{1}{(1-q)(1-q^5)(1-q^9)(1-q^{31})(1-q^{53})}.$$

2. Reduction of lecture hall partitions

Fix a non-decreasing sequence $a=(a_i)_{i\geq 1}$ of positive integers, and fix a positive integer n. An n-tuple $\lambda=(\lambda_1,\lambda_2,\ldots,\lambda_n)\in\mathbb{N}^n$ is a lecture Hall partition if and only if $\lambda_i\geq \lceil \lambda_{i-1}a_i/a_{i-1}\rceil$ for $1\leq i\leq n$. For $1\leq i\leq n$, let $\lambda^{(i)}=(0,\ldots,0a_i,a_{i+1},\ldots,a_n)\in\mathbb{N}^n$. If λ belongs to \mathcal{L}_n , then the sum $\lambda+\lambda^{(i)}$ also belongs to \mathcal{L}_n .

LEMMA 1. Let λ be a lecture hall partition belonging to \mathcal{L}_n . Then $\lambda - \lambda^{(i)}$ belongs to \mathcal{L}_n if and only if $\lambda_i - \lceil \lambda_{i-1} a_i / a_{i-1} \rceil \geq a_i$ for $1 \leq i \leq n$.

DEFINITION 1. A lecture hall partition of length n is said to be reduced if $0 \le \lambda_i - \lceil \lambda_{i-1} a_i / a_{i-1} \rceil < a_i$ for $1 \le i \le n$. The set of reduced partitions of \mathcal{L}_n will be denoted by \mathcal{R}_n .

LEMMA 2. Let λ be a lecture hall partition of length n. Then there exists a unique reduced lecture hall partition μ and a unique sequence of integers $(k_i)_{1 \le i \le n}$ such that $\lambda = \mu + \sum_{i=1}^n k_i \lambda^{(i)}$.

Consequently, the generating function for lecture hall partitions of length n is

$$S_n = \sum_{\lambda \in \mathcal{L}_n} x^{|\lambda|_e} y^{|\lambda|_o} = \frac{P_n(x, y)}{\prod_{i=1}^n (1 - x^{|\lambda^{(i)}|_e} y^{|\lambda^{(i)}|_o})}$$

where the polynomial $P_n(x,y) = \sum_{\mu \in \mathcal{R}_n} x^{|\mu|_e} y^{|\mu|_o}$ enumerates reduced lecture hall partitions.

3. An involution on \mathcal{R}_n

For $\mu \in \mathcal{R}_n$, let $\mu^* = (\mu_1^*, \dots, \mu_n^*)$ be the unique *n*-tuple such that

$$\begin{cases} \mu_{n-2k}^* = \mu_{n-2k} & \text{for } n-2k \ge 1\\ \mu_{n-2k-1}^* - \left\lceil \frac{a_{n-2k-1}}{a_{n-2k-2}} \mu_{n-2k-2}^* \right\rceil = \left\lfloor \frac{a_{n-2k-1}}{a_{n-2k}} \mu_{n-2k} \right\rfloor - \mu_{n-2k-1} & \text{for } n-2k \ge 1. \end{cases}$$

Theorem 2. The correspondence $\mu \mapsto \mu^*$ defines an involution on the set \mathcal{R}_n .

We can extend the involution $\mu \mapsto \mu^*$ into a bijection f from $\mathcal{R}_n \times [0, a_{n+1}]$ onto \mathcal{R}_{n+1} , by defining

$$f(\mu_1, \dots, \mu_n; i) = \left(\mu_1^*, \dots, \mu_n^*, \left\lceil \frac{a_{n+1}}{a_n} \mu_n^* \right\rceil + i\right).$$

It is clear that:

$$|f(\mu, i)|_o = |\mu^*|_e = |\mu|_e,$$

$$|f(\mu, i)|_e = i - |\mu|_o + \sum_k \left(\left\lceil \frac{a_{n-2k+1}}{a_{n-2k}} \mu_{n-2k} \right\rceil + \left\lfloor \frac{a_{n-2k-1}}{a_{n-2k}} \mu_{n-2k} \right\rfloor \right).$$

4. The (k-l)-sequences

By a (k-l)-sequence we shall mean a sequence a defined by the initial values $a_1 = 1$ and $a_2 = l$ and the following recurrence relations:

$$\begin{cases} a_{2n} = l a_{2n-1} - a_{2n-2} & \text{for } n \ge 2 \\ a_{2n+1} = k a_{2n} - a_{2n-1} & \text{for } n \ge 1 \end{cases}$$

where $k, l \geq 2$ are two integers. We obtain

$$\begin{split} |f(\mu,i)|_o &= |\mu|_e \;, \\ |f(\mu,i)|_e &= i - |\mu|_o + \begin{cases} k|\mu|_e & \text{if n is even,} \\ l|\mu|_e & \text{if n is odd.} \end{cases} \end{split}$$

This implies that the generating functions $P_n(x,y) = \sum_{\mu \in \mathcal{R}_n} x^{|\mu|_e} y^{|\mu|_o}$ for reduced lecture hall partitions can be computed inductively via the following recurrence relations:

$$P_{2n+1}(x,y) = \frac{1 - x^{a_{2n+1}}}{1 - x} P_{2n}(x^k y, x^{-1}) \quad \text{and} \quad P_{2n}(x,y) = \frac{1 - x^{a_{2n}}}{1 - x} P_{2n-1}(x^l y, x^{-1})$$

with the initial condition $P_0 = 1$.

The sequence a^* is defined by $a_0^* = 0$, $a_1^* = 1$ and the recurrence relations:

$$\begin{cases} a_{2n} = l a_{2n-1} - a_{2n-2} & \text{for } n \ge 2 \\ a_{2n+1} = k a_{2n} - a_{2n-1} & \text{for } n \ge 1. \end{cases}$$

THEOREM 3. Given a (k,l)-sequence a, the generating functions $S_n = \sum_{\lambda \in \mathcal{L}_n} x^{|\lambda|_e} y^{|\lambda|_o}$ for lecture hall partitions of even and odd length are given by:

$$S_{2n} = \prod_{i=1}^{2n} \frac{1}{1 - x^{a_i} y^{a_i^*}}$$
 and $S_{2n+1} = \prod_{i=1}^{2n+1} \frac{1}{1 - x^{a_{i+1}^*} y^{a_{i-1}}}$.

5. Limit theorems

Taking the limit $n \to \infty$ in Theorem 3 leads to the following results:

Theorem 4. For $k \in \mathbb{N}$ and $k \geq 2$, the bivariate generating function of partitions (μ_1, \ldots, μ_n) such that $\frac{\mu_{i+1}}{\mu_i} > \frac{k+\sqrt{k^2-4}}{2}$ is:

$$\sum_{\mu} x^{|\mu|_e} y^{|\mu|_o} = \prod_{i>1} \frac{1}{1 - x^{a_i} y^{a_{i-1}}}$$

with $a_0 = 0$, $a_1 = 1$ and $a_{i+1} = ka_i - a_{i-1}$.

THEOREM 5. For $k \in \mathbb{N}$ and $k \geq 2$, the generating function of partitions (μ_1, \ldots, μ_n) such that $\frac{\mu_{i+1}}{\mu_i} > \frac{k+\sqrt{k^2-4}}{2}$ is:

$$\sum_{\mu} q^{|\mu|} = \prod_{i>1} \frac{1}{1 - q^{e_i}}$$

with $e_1 = 1$, $e_2 = k + 1$ and $e_{i+1} = ke_i - e_{i-1}$.

EXAMPLE. k=2. In that case $\mu_{i+1} > \mu_i$ and we obtain the Euler identity [2, Chap. 16]:

$$\sum_{\mu \in \mathcal{D}} q^{|\mu|} = \prod_{i>0} \frac{1}{1 - q^{2i+1}}.$$

Example. k=3. In that case $\mu_{i+1}>\frac{3+\sqrt{5}}{2}\mu_i$ and:

$$\sum_{\mu \in \mathcal{L}_n} q^{|\mu|} = \frac{1}{(1-q)(1-q^4)(1-q^{11})(1-q^{29})(1-q^{76})\cdots} = \prod_{i \geq 1} \frac{1}{(1-q^{e_i})},$$

with $e_1 = 1$, $e_2 = 4$ and $e_{i+1} = 3e_i - e_{i-1}$. In fact $e_i = F_{2i-3} + F_{2i-1}$ where F_i is the *i*th Fibonnaci number.

6. Questions

- (1) Give a characterization of the sequences (a_1, \ldots, a_n) that have a simple expression for the corresponding generating functions.
- (2) Find finite version of other theorems like the Rogers-Ramanujan theorem for instance.

Bibliography

- [1] Bousquet-Mélou (M.) and Eriksson (K.). *Lecture Hall Partitions*. Rapport LaBRI n° 1107-96, Laboratoire Bordelais de Recherche en Informatique, Université de Bordeaux I, 1996.
- [2] Euler (L.). Introductio in analysin infinitorum. Marcum-Michælem Bousquet, Lausannæ, 1748.