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Abstract
A well-known theorem of Euler [2, Chap. 16] says that the number of partitions of an
integer N into distinct parts is equal to the number of partitions of N into odd parts.
The talk gives a finite version of this theorem that says that the number of “lecture hall
partitions of length n” of N equals the number of partitions of N into small odd parts:
1,3,5,...,2n — 1. This work is a common work with Kimmo Eriksson [1].

1. Lecture hall partitions

Let D be the set of integer partitions with distinct parts. For n > 1, let £,, be the following set
of partitions (having possibly some empty parts):

We call the members of £,, lecture hall partitions of length n, since they describe all possible ways
of designing a lecture hall with space for up to n rows of seats placed on integer heights, such
that at every seat there is a clear view of the speaker without obstruction from the seats in front
(Figure 1).

Removing the empty parts puts £,, in one-to-one correspondence with the following subset of D:
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We will prove the following remarkable theorem.

THEOREM 1 (LECTURE HaLL THEOREM). The generating function for lecture hall partitions of
length n is
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where the weight |A| of a partition A = (Ay,..., ) is A+ -4+ A

Equivalently, the generating function for the partitions of D,, is L, (¢). Observe that D,, C D4,
and D = lim,,_., D,, so in the limit this theorem yields the familiar Euler identity [2, Chap. 16]:
the generating function for the elements of D is equal to the generating function for the elements
of O, the set of integer partitions with odd parts:
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Ficure 1. The design of a lecture hall of four rows corresponding to the lecture
hall partition (1,2,4,6).

We will prove a refinement of the Lecture Hall Theorem. We define the even and odd weights ||,
and |A|, of a partition A = (Ay,..., A,) by

|A|e = Z An—2k and |A|o = Z An—2k—1-

0<k<((n-1)/2] 0<k<[n/2]~1

Of course, |A| = |Al. + |A|,. We will prove the bivariate identity
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This identity is a corollary of Theorem 3 in section 4, taking k& = [ = 2.

We will in fact discuss a generalization to other sets of partitions of the form {(A1, As,..., A,) ¢
0 < AJjay < Ayfag < --- < A, /a,} where (aq,as,...,a,) is a given non-decreasing sequence of
integers. We define now £, and S(,, 4,

.....
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Here are surprisingly simple values of S(4, a,,...a,):

g _ 1
1,2,5,8 — (1 _ q)(l _ q3)(1 _ qs)(l _ q13)7
1
51,2,5,8,19 = (1 — q)(l — q4)(1 _ q7)(1 _ q11)(1 _ q27)’
1
51,2,5,8,19,30 = (1 — q)(l — qg)(l — qg)(l _ q13)(1 _ q31)(1 _ q49)’
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2. Reduction of lecture hall partitions

Fix a non-decreasing sequence a = (a;);>1 of positive integers, and fix a positive integer n. An
n-tuple A = (A, Ag,. .., A,) € N” is a lecture Hall partition if and only if A\; > [A;i_1a;/a;_,] for
2<i<n Forl<i<mn,let A\ =(0,...,0a;,a41,...,a,) € N*. If X belongs to £, then the
sum A 4+ A also belongs to £,,.

LEMMA 1. Let X be a lecture hall partition belonging to L,. Then X — A% belongs to L, if and
only if \j — [Nisq1a;/a;_1] > a; for 1 <i < n.



DEFINITION 1. A lecture hall partition of length n is said to be reduced if 0 < \;—[X;_1a;/a;_1] <
a; for 1 <1 < n. The set of reduced partitions of £,, will be denoted by R,,.

LEMMA 2. Let A be a lecture hall partition of length n. Then there exists a unique reduced lecture
hall partition p and a unique sequence of integers (k;)1<i<n such that X = p+ 37, kA0,

Consequently, the generating function for lecture hall partitions of length n is

Fu(z,y)
— [Me g [Alo — LA
= ,\;: T [Tioi (1 = aAOleyrle)

where the polynomial P,(z,y) =" cx. zl#leyltlo enumerates reduced lecture hall partitions.

3. An involution on R,

For p € R, let p* = (pi,..., 1) be the unique n-tuple such that

W or = Hn_ak forn -2k >1
o —ok—1 — H:%NZ—M—J = {%Mn—zd = fn—2k-1 forn —2k—-12>1.

THEOREM 2. The correspondence p — p* defines an involulion on the set R,,.

We can extend the involution g — p* into a bijection f from R, x [0, a, 4] onto R, 41, by defining
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4. The (k — l)-sequences

By a (k — l)-sequence we shall mean a sequence a defined by the initial values a; = 1 and a; =1
and the following recurrence relations:

{a2n =lag,_1 — Q3 forn > 2

Uon41 = kas, — asn_1 forn >1

where k,[ > 2 are two integers. We obtain

[f(s D), = |pel,

. ' E|pl. if n is even,
(ks D], = @ = [ulo + {1|M|e if n is odd.

This implies that the generating functions P,(z,y) = > ,cx. zlileyltle for reduced lecture hall
partitions can be computed inductively via the following recurrence relations:

1 _ xd2n+1 1 _ xa2n

P2n+1('r7y): P2n('rky7‘r_1) and P2n('r7y): P2n—1($1y7x_1)
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with the initial condition P, = 1.



The sequence a* is defined by af = 0, @] = 1 and the recurrence relations:

{(lzn =lag,_1 — a2n_2 forn > 2

Gony1 = klap — Gopn_1 for n > 1.

THEOREM 3. Given a (k,l)-sequence a, the generating functions S, = 3", zIMeylMe for lecture
hall partitions of even and odd length are given by:
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5. Limit theorems
Taking the limit n — oo in Theorem 3 leads to the following results:

THEOREM 4. For k € N and k > 2, the bivariate generating function of partitions (p1, ..., )
such that % > ERE=d g
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with ag =0, a; =1 and a;41 = ka; —a;_1.

THEOREM 5. For k € N and k > 2, the generating function of partitions (py,. .., u,) such that
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withe, =1, e5=Fk+1 and e;31 = ke; —e;_;.
ExaMmpPLE. k= 2. In that case p;4; > p; and we obtain the Euler identity [2, Chap. 16]:
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ExAMPLE. k£ = 3. In that case p;41 > 3?/3#2- and:

lul _ 1 _ 1
2, 0" = (1-)(1—¢)(1—g")(1—¢*)(1—q¢)-- 11 (1—q5)
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with e; = 1, e5 =4 and e;41 = 3e; — e;_1. In fact e; = F5,_3+ F5_; where F; is the ¢th Fibonnaci
number.

6. Questions

(1) Give a characterization of the sequences (a4, ...,a,) that have a simple expression for the
corresponding generating functions.
(2) Find finite version of other theorems like the Rogers-Ramanujan theorem for instance.
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