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Abstract

A method to enumerate self-avoiding convex polygons, which in theory will work for
all dimensions, is presented. The generating series for polygons of dimensions 2 (already
known) and 3 are given. They are both the quotients of two D-finite series, and it appears
that this property might hold for higher dimensions.

1. Introduction

A very old open problem is to enumerate self-avoiding walks (self-avoiding polygons) in dimen-
sion d. This talk answers a slightly more restricted problem by presenting a method of enumerating
convex self-avoiding polygons. The 2-dimensional case has already been solved in [3] and [6], but
this method works in higher dimensions, and provides a combinatorial interpretation of the 2-
dimensional result.

Some basic definitions are required. An (oriented) polygon of perimeter 2n is a closed path
(81,82, ..., 52,) of vertices on Z® such that s; and s;;, are neighbours for 1 < ¢ < 2n and Sy,41 = 8.
It is defined up to cyclic permutations of its vertices. The rooted polygon (s, Sy, ..., S2,) represents
all the polygons formed by the cyclic permutations. A self-avoiding polygon is such that s; # s; for
1 <i# j < 2n;in other words, it never crosses itself except at the start/end point. A non-empty
self-avoiding polygon is also called a loop. Note that the polygon (s, s2) is a loop.

Polygons are often represented as words over an alphabet. This representation means the
polygons are defined up to a translation in Z? which is a requirement for counting them, and
also gives a convenient method to define additional properties of the polygons. Thus a rooted
polygon of perimeter 2n will often be regarded as a word w = wjus---ug, on the alphabet
A ={1,2,...,d} U{1,2,...,d}. Then if (ey,...,e4) is the canonical basis of Z% and u; = k
(resp. k), then u; is a unitary step from the vertex s; to s;; along e (resp. —e;). Note that for
all £ < d, the number of occurrences of k in u, denoted |u|;, is equal to the number of occurrences
of k in u. Conversely, any word u on A that satisfies |u|, = |u|; for 1 < k < d is a rooted polygon.
For example, the polygon 1212 would be a unit square. More examples can be seen in figure 1.

This representation is used to define dimension, unimodal polygon and convex polygon (see be-
low). These concepts are important since the method to count the convex polygons involves de-
composing them into their unimodal parts, and counting their loops of each dimension.

The dimension of a polygon is the dimension of its convex hull, which is equal to the number of
k such that |ul, > 0. For example, the loop (s1,s,), represented by u = kk, has dimension 1.
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F1GURE 1. (a) staircase (b) unimodal (c) convex polygons

A polygon is unimodal if, for each direction k, the polygon can be written u = vw with |v|z =
|w|; = 0. In other words, all the k’s come before all the k’s in its representative word u, and so all
the steps taken in a given direction occur before all the steps taken to return from that direction.

A polygon is convez if for each k there is a cyclic permutation of the polygon such that all the &’s
come before all the k’s. More intuitively, for each k, and each a € R, the intersection of a convex
polygon with the half-space {(a,...,a4) : ax < a}is connected. Another characteristic is that the
length of the perimeter of a convex polygon is equal to the length of the perimeter of the smallest
bounding box of the polygon. A unimodal polygon is a convex polygon that contains the vertex of
minimal coordinates of its smallest bounding box. See figure 1.

2. Enumeration Method

To count the self-avoiding convex polygons, the idea is to count all convex polygons and then
remove those that are not self-avoiding. Let P represent the number of all convex polygons of
dimension d, and P, be the number of convex polygons of dimension d with a k-dimensional loop
but no loops of dimension < k. Then

(1) P=P +P+-+ Py

Polygons will be enumerated by using a generating function based on their perimeters. If P is a
set of polygons, then the perimeter generating function for the elements of P is
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where |u| stands for the number of letters of u; and the multi-perimeter generating function is
S ol
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A staircase polygon is a pair of directed paths having the same end-points, so all the steps taken
in positive directions (words on {1,...,d}) occur before all the steps taken in negative directions
(words on {1,...,d}). The multi-perimeter generating function for staircase polygons, where n; is
the number of steps taken in direction e; in Z¢9, is
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(see [4]). This series is D-finite, that is, it satisfies a linear differential equation with polynomial
coefficients [7]. Moreover,
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is algebraic. This series has a generalization to Z, where A is a partition [4].

THEOREM 1. The multi-perimeter generating function of the number of d-dimensional convex
polygons that have no 1-dimensional loops is
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where if f(z1,...,2q) =2, ny@ny,ng @1 -2yt then the even part of f is
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The proof of this theorem uses the inclusion/exclusion principle and a decomposition of the
word-representations of the polygons.

The following gives the formula which will be applied to count convex loops. The idea is that
for a convex polygon having loops of dimension d, two cases can occur: either it has only one loop
(it itself is a d-dimensional loop), or it can have two loops. There are 2¢ possible loop structures,
and the loops are unimodal. If the polygon is represented by wlyvly, where the [; are loops, then
uv is essentially a staircase polygon, and so counted by Z;. Details are presented in [2].

THEOREM 2. In dimension d, let P; and Z; be defined as above, and let Uy be the mulli-perimeter
generating funclion for unimodal polygons having only loops of dimension d, and Cy be the gener-
ating function for convex polygons having only loops of dimension d. Then

Pd - Cd + Qd_lZde.

Since a convex polygon of dimension d which has only loops of dimension d is self-avoiding, C
counts the d-dimensional self-avoiding convex polygons. Now U; can be calculated for all d by
rewriting it in terms of Z; using induction. An important element of the proof is that a loop of
a rooted unimodal polygon is unimodal, and hence if a rooted unimodal polygon wugliuilsus has
loops I; in I; C {1,...,d}, then I; N I, = (). Thus a unimodal polygon is made up of a sequence
of unimodal loops separated by staircase polygons where the structure of the distribution of the
loops can be described by a partition of d. The generating function for unimodal polygons having
loops corresponding to this partition can be expressed in terms of Z,, A the partition of d, and Uy,
k < d. Then this result, together with equation (1) and theorem 2 gives a means of calculating the
number of self-avoiding convex polygons.

3. 2-D Polygons

In dimension d = 2, P — P, = P,, so combining theorems 1 and 2 gives
$1$2(1 — $1)2(1 — 332)2
(1 — T — .T2)2
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Setting A = 1 — 2z, — 2z5 — 22125 + 22 + 22, and solving for C; using U, = 2% and (2) gives

2,2
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Cy = A2 A3/2

where
A=1-3z; — 325+ 32 + 322 + 52105 — 2% — 23 — 2lay — x12] — 3y@a(T) — 79)°.

This was first proved by Lin and Chang [6], and is a refinement of a result by Delest and Viennot [3].
Alternate proofs are found in [1] and [5]. This work gives a nice combinatorial interpretation of
each of the two parts of C5 in terms of convex polygons having no one-dimensional loops, thereby
solving an open problem due to Viennot.

4. 3-D Polygons

This time, the situation is more complicated. Given P— P, = P, + P3, where P — P, is calculated
using theorem 1, and P; = C3 4 4Z3UZ2 by theorem 2, it remains to find a way to count P, the
number of polygons in Z?> having 2-dimensional loops but no 1-dimension loops. This can be done
by a case-by-case analysis of the 7 possible loop structures. The result is
B(1)

Z3
where A(?) and B(t) are algebraic in ¢, and Zs is D-finite. A(?) is of degree 16, and B(t¢) has
degree 8. (The exact value of C'5 would take up a quarter of the page.)

Cs=A(t) +

5. Conclusion

This method works because the loops of unimodal polygons are non-overlapping. In theory this
method is extensible to higher dimensions, though of course in practice the calculation of the P;’s
for ¢+ < d would become difficult. Since for each d the series Z; is D-finite and the series U, can be
written in terms of Z;, is seems reasonable from the formula to believe that the result will continue
to be a quotient of two D-finite series. There may be generalizations to polygons that are convex
along d — 1 directions, and 3-choice polygons.
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