Computation of the Integral Basis of an Algebraic Function Field and Application to the Parametrization of Algebraic Curves

Mark van Hoeij University of Nijmegen

June 7, 1995

[summary by Laurent Bertrand]

Abstract

A new algorithm [1] for computing an integral basis of an algebraic function field is presented. This algorithm is then applied to the computation of parametrizations of algebraic curves of genus zero [2].

1. Computation of the integral basis

Let L be an algebraically closed field of characteristic zero and x be transcendental over L. Let y be algebraic over L(x) with minimal polynomial f of degree n with respect to y. We suppose that y is integral over L[x], so f is monic over L[x]. Let C be the algebraic curve defined by the equation

$$f(X,Y) = 0$$

and let L(C) be the function field

$$L(C) = L(x, y) = L(X)[Y]/(f(X, Y)).$$

A function of L(C) is called *integral* if it satisfies a monic irreducible polynomial with coefficients in L[x]. The integral closure Θ of L[x] in L(C) is the set of all integral functions. It is also the set of all functions with no finite pole, and it is a free module of rank n over L[x]. An *integral basis* is then a set $\{b_0, \ldots, b_{n-1}\}$ of elements of L(C) such that

$$\Theta = L[x]b_0 + \dots + L[x]b_{n-1}.$$

The algorithm presented here computes an integral basis with all its elements in K(x, y) where K is a given subfield of L containing all the coefficients of f.

1.1. Algorithm. The algorithm can be described as follows. We look for an integral basis of the form $\{b_0, \ldots, b_{n-1}\}$ such that b_i is a polynomial of degree i in y with coefficients in K(x). Moreover b_0 can be chosen equal to 1. The integral basis is computed step by step. Suppose that

$$\{b_0,\ldots,b_{d-1}\}$$

have been computed, then we compute b_d such that

$$L[x]b_0 + \dots + L[x]b_d = \{a \in \Theta : \deg(a) \le d\}$$

and $deg(b_d) = d$ as follows:

(1) let b_d be yb_{d-1} ;

- (2) let $V = \{a \in \Theta : \deg(a) \leq d\} \setminus L[x]b_0 + \cdots + L[x]b_d;$ while $V \neq \emptyset$ do
 - (a) choose $a \in V$ such that $a = (a_0b_0 + \cdots + a_db_d)/k$ with a_0, \ldots, a_d and k in K[x] and $a_d = 1$;
 - (b) substitute b_d by a.

In order to compute an element a satisfying the conditions of (a), the author applies the result saying that $x - \alpha$ appears in the denominator k if and only if C has a singularity on the line $x = \alpha$. After that, for computing the a_i 's, Puiseux expansions are used and also bounds for these expansions and for the degree of the denominator. The issue is the resolution of a linear system.

2. Application to the parametrization of algebraic curves

Here f is supposed to be irreducible of degree n with respect to y. The curve C is the projective algebraic curve defined by f. Let F be the homogenization of f. It means that F(X,Y,Z) is the polynomial of smallest degree such that f = F(X,Y,1). A parameter p is a function generating L(C), i.e., every function in L(C) can be written as a rational funtion in p. It is in fact a function with only one pole which is of order 1 on C. A parametrization of C is a pair (X(t),Y(t)) of rational functions such that f(X(t),Y(t))=0 and L(X(t),Y(t))=L(t).

Curves allowing parametrizations are called rational curves. They are in fact curves of genus 0. The aim of this algorithm is to compute when it is possible a parametrization of a given curve, using the algorithm for computing an integral basis presented before.

- 2.1. Algorithm. The algorithm for computing a parametrization is the following:
- (1) Compute a parameter p;
- (2) Express x and y as rational functions in p.

For the computation of a parameter, divide the projective plane in two disjoint parts A and B. Compute a function P with only one pole of multiplicity 1 in $A \cap C$. Then compute a function Q with no pole in $A \cap C$ and such that P + Q has no pole in $B \cap C$. (For that, the computation of an integral basis is used). Then a parameter is P + Q.

The last thing to do is to express x and y as rational functions in p by computing appropriated resultants.

The computation of integral basis can also be used to compute the genus of a curve or the Weierstrass normal form of a curve of genus 1, see [1, 3].

Bibliography

- [1] van Hoeij (Mark). An algorithm for computing an integral basis in an algebraic function field. *Journal of Symbolic Computation*, vol. 18, 1994, pp. 353-363.
- [2] van Hoeij (Mark). Computing parametrizations of rational algebraic curves. In *Symbolic and Algebraic Computation*. ACM, pp. 187-190. New York, 1994. Proceedings ISSAC'94, Oxford, England.
- [3] van Hoeij (Mark). An algorithm for computing the Weierstrass normal form. In Symbolic and Algebraic Computation. ACM. ACM Press, 1995. Proceedings ISSAC'95, Montreal, Canada.