Computation of the Integral Basis of an Algebraic Function Field and
Application to the Parametrization of Algebraic Curves

Mark van Hoeij
University of Nijmegen

June 7, 1995

[summary by Laurent Bertrand]

Abstract

A new algorithm [1] for computing an integral basis of an algebraic function field is pre-

sented. This algorithm is then applied to the computation of parametrizations of algebraic
curves of genus zero [2].

1. Computation of the integral basis

Let L be an algebraically closed field of characteristic zero and x be transcendental over L. Let y be algebraic over $L(x)$ with minimal polynomial f of degree n with respect to y. We suppose that y is integral over $L[x]$, so f is monic over $L[x]$. Let C be the algebraic curve defined by the equation

$$f(X,Y) = 0$$

and let $L(C)$ be the function field

$$L(C) = L(x,y) = L(X)[Y]/(f(X,Y)).$$

A function of $L(C)$ is called integral if it satisfies a monic irreducible polynomial with coefficients in $L[x]$. The integral closure Θ of $L[x]$ in $L(C)$ is the set of all integral functions. It is also the set of all functions with no finite pole, and it is a free module of rank n over $L[x]$. An integral basis is then a set \(\{b_0, \ldots, b_{n-1}\} \) of elements of $L(C)$ such that

$$\Theta = L[x]b_0 + \cdots + L[x]b_{n-1}.$$

The algorithm presented here computes an integral basis with all its elements in $K(x,y)$ where K is a given subfield of L containing all the coefficients of f.

1.1. Algorithm. The algorithm can be described as follows. We look for an integral basis of the form $\{b_0, \ldots, b_{n-1}\}$ such that b_i is a polynomial of degree i in y with coefficients in $K(x)$. Moreover b_0 can be chosen equal to 1. The integral basis is computed step by step. Suppose that

$$\{b_0, \ldots, b_{d-1}\}$$

have been computed, then we compute b_d such that

$$L[x]b_0 + \cdots + L[x]b_d = \{a \in \Theta : \deg(a) \leq d\}$$

and $\deg(b_d) = d$ as follows:

1. let b_d be $y b_{d-1}$;
(2) let \(V = \{ a \in \Theta : \deg(a) \leq d \} \setminus L[x]b_0 + \cdots + L[x]b_d; \)
while \(V \neq \emptyset \) do
 (a) choose \(a \in V \) such that \(a = (a_0b_0 + \cdots + a_db_d)/k \) with \(a_0, \ldots, a_d \) and \(k \) in \(K[x] \) and \(a_d = 1; \)
 (b) substitute \(b_d \) by \(a. \)

In order to compute an element \(a \) satisfying the conditions of (a), the author applies the result saying that \(x - \alpha \) appears in the denominator \(k \) if and only if \(C \) has a singularity on the line \(x = \alpha \). After that, for computing the \(a_i \)'s, Puiseux expansions are used and also bounds for these expansions and for the degree of the denominator. The issue is the resolution of a linear system.

2. Application to the parametrization of algebraic curves

Here \(f \) is supposed to be irreducible of degree \(n \) with respect to \(y \). The curve \(C \) is the projective algebraic curve defined by \(f \). Let \(F \) be the homogenization of \(f \). It means that \(F(X,Y,Z) \) is the polynomial of smallest degree such that \(f = F(X,Y,1) \). A parameter \(p \) is a function generating \(L(C) \), i.e., every function in \(L(C) \) can be written as a rational function in \(p \). It is in fact a function with only one pole which is of order 1 on \(C \). A parametrization of \(C \) is a pair \((X(t),Y(t)) \) of rational functions such that \(f(X(t),Y(t)) = 0 \) and \(L(X(t),Y(t)) = L(t) \).

Curves allowing parametrizations are called rational curves. They are in fact curves of genus 0. The aim of this algorithm is to compute when it is possible a parametrization of a given curve, using the algorithm for computing an integral basis presented before.

2.1. Algorithm. The algorithm for computing a parametrization is the following:
(1) Compute a parameter \(p; \)
(2) Express \(x \) and \(y \) as rational functions in \(p, \)

For the computation of a parameter, divide the projective plane in two disjoint parts \(A \) and \(B \). Compute a function \(P \) with only one pole of multiplicity 1 in \(A \cap C \). Then compute a function \(Q \) with no pole in \(A \cap C \) and such that \(P + Q \) has no pole in \(B \cap C \). (For that, the computation of an integral basis is used). Then a parameter is \(P + Q. \)

The last thing to do is to express \(x \) and \(y \) as rational functions in \(p \) by computing appropriated resultants.

The computation of integral basis can also be used to compute the genus of a curve or the Weierstrass normal form of a curve of genus 1, see [1, 3].

Bibliography

62