Using Functional Analysis in Average Case Analysis:
the Example of the Gauss Reduction Algorithm

Brigitte Vallée

Université de Caen
May 15, 1995

[summary by Pierre Nicodeme]

Abstract

The Gaussian algorithm may be viewed as a formal generalization of the Euclidean algo-
rithm: it uses an extension of the real shift operator U used for continued fractions. We study
the random variable “number of iterations” L, when the input data are distributed along
an initial density, and we describe the evolution of the data while processing the algorithm.
The results use spectral properties of a family of Ruelle-Mayer operators H; “inverting” the
shift operator /. The operator family H; defines a unifying framework allowing a common
analysis of both Euclid and Gauss algorithms. This work is a generalization of a common

work with Hervé Daudé and Philippe Flajolet [2].

1. The Euclidean and Gaussian algorithms

Starting from a lattice in dimension 2, £ = Zu @ Zwv, with u,v € C not collinear, the Gaussian
algorithm finds a minimal basis (m,n) in the sense that the triangle built on (m,n) has no obtuse
angle. The problem is invariant by similitude « +— Au, with A € C, and therefore the problem on
(u,v) is equivalent to the problem on (1,v/w). The triangle built on (1, z) has no obtuse angles iff
z € B—D, where B={2,0< Rz < 1}, and D is the disk of diameter [0, 1].

Ficure 1. A lattice and two of its bases represented by the parallelogram they
span. The first basis is skew, the second one is minimal (reduced).

The Gaussian algorithm is the composition of a succession of transforms of two types: (i) inver-
sion § with S(z) = 1/z, (ii) translation T~ with T(z) = 2+ 1. With U(z) =1/2— |R(1/z)], the
Gaussian algorithm terminates whenever U¥(z) € B — D. Applying a suitable transform 7-™ with
acute basis, so that ¥(z) > 0, it is readily seen that it suffices to consider cases where z € D.

The Gaussian algorithm for lattice reduction is a generalization of the FEuclidean algorithm for

finding the gcd of two integers in the following way:
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FEuclid Gauss

Continued Fractions Lattice Reduction
Algorithm Input: z € [0, 1] input z € D = disc of diameter [0, 1]
while z # 0 while z € D
doz=1/z—|1/z] doz=1/z—[R(1/z)]
Termination terminates on Q terminates on C\ {R\ Q}
when the input is in R when the input is in C

We are investigating a generalization of a problem set by Gauss around 1800 for the Euclidean
algorithm: starting with a density f on [0, 1], what is the density Fi[f] after k iterations of U, with
U(z)=1/z — |1/z]. The possible antecedents of z are of the form 1/(m+ z), with m > 1, and F}
and Fj,; are connected by

(1) Fenlie) = ¥ Rl ().

= (m+z)? m4+ z

Introducing the operator G, defined by

2) G110 = 3 ! ()

many properties of the Euclidean algorithm can be expressed in terms of spectral quantities related
to the operator G, (with s close to 2): the existence of a limit density F..[f](z) = =5

= 1,5 CoTTe-
sponds to the dominant eigenvector of G, (with eigenvalue A = 1); the expectation ofgthg number
K, of iterations of Euclid on p/q verifying 1 < p < ¢ < N is given by E[Ky]| = %‘5—2 log N + O(1),
in tight relationship with X'(2) (with A(s) dominant eigenvalue of G,).

We will derive from the properties of the G operators the “stationary” distribution F..[f], and the
distribution of the number L of iterations of the Gaussian algorithm along any initial distribution
I

Like the continued fraction expansion of a number under the Euclidean algorithm, with z; € D,
which implies ®(1/2;) > 1, we have z;4, = 1/2z — m;, with m; > 1, which is equivalent to
zj = 1/(mj + 2j41), and gives the expansion

(3) 20 = i
my —I_ 1
my +
mp ‘|‘ 2k

This expansion terminates as soon as z; € B — D. Then L(z) = k, 20 = hy(2) and hy,(2)
may be expressed in terms of the continuants Q(mq, ma,...,my) and Py(my,ma,...,my) =
Qr_1(ma,...,my) as

P+ 2P
(4) hm(2) = 3——5—

Qr + 2Qr-1

for |h| = k; the continuants are defined by the recurrence equations
Qn('rh Loy .- '7:En) = xn@n—l(xlv RS xn—l) + Qn—2(~r17 ey xn)v
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FiGURE 2. The domains Dy \ Dy, Ficure 3. The conditional in-
D1\ Dy, Dy \ D3, D3\ Dy, Dy \ Ds variant density F...

represented alternatively in black

and white. (The largest disk is

Dy, = D which is the disk of di-

ameter [0,1].)

with Qo = 1, Q1(z1) = ;. Then, the set of points giving more than k iterations is [L(z) > k+ 1] =
Ujnj=x (D) with h(D) the fundamental disk of diameter h(Z) = [P/ Q, (Pr + Pr_1)/(Qr + Qr-1)]-

We have p[h(D)] = [[,py f(2)dzdy = [[5 |W(2)]*f o h(z) dzdy, the measure p being associated
with the density f, and, remarking that the disks (D) are disjoint, after exchanging the sum and
integral signs,

(5) me= Pl k1) = s ST (D)) = [ (30 WS o h(2)) dady.

|h|=k |h|=k

Introducing the operator H5[f][2] = 3= |W/(2)° f o h(%), we have

THEOREM 1. For a densily f, the probability of making more than k ilerations of the Gaussian
algorithm s

_ Sy HELS)(z) dady
S e
if the density [ is uniform, the probability is
1
== 2 Gt e

my,...,Mg
and the expectation of the number of iterations is
180 1 1
T 2
d>1 " d<e<2d

E[L] = - +

W | o

T

Therefore all the objects we are studying may be expressed with H,[f](z) = 3,5, mf(mi:)

and its holomorphic version G,[f](z) = 3,51 (m+z)f( miz), the classical Ruelle-Mayer operator
G,. While in the uniform case, the study of G, is sufficient, in general it is necessary to study the

complete family of the H;.
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2. Properties of the Ruelle-Mayer operators and application to the analysis of the
Gaussian algorithm

The Ruelle-Mayer operators G, are defined on the set A, (V') of holomorphic functions on V,
continuous on V, with V = {|z = 1| < 3}, for s with ®(s) > 1. They are nuclear operators of order
0 (very similar to infinite matrices); after transfer in another Hilbert space, they are diagonalisable
with a discrete spectrum; moreover, they are Perron-Frobenius operators for s > 1, having a unique
dominant eigenvalue A(s).

As a consequence, turning back to the uniform case, we have the theorem.

THEOREM 2. The probability w; has a geometric behaviour, wy ~ cA¥, with A\, ~ 0.1994 and
c~1.3.

The dynamic density Fy(z) converges to a (conditional) invariant density F.,(z) proportional to
[ (1 = w?)eq(z + iyw) dw, where ¢, is the dominating eigenvector of G,.

In the general case, we have to study generalized Ruelle-Mayer operators [3]

The spectral properties of the operator H, are essentially the same as those of G,; there is a
dominant eigenvalue A(s) and a dominant eigenvector which may be expressed easily in terms of
G,. However, an interesting improvement is possible in case of functions with valuations.

THEOREM 3. For an initial densily of valuation t—f(z,y) = |y|'g9(x,y), with g £ 0 on the real
azis—the asymptotical behaviours of wi[f] and Fi[f] depend on the dominant spectral objects of
Gago:

(6) @i f] ~ C/\Izi+2t
and Fy,[f)(2) is proportional to |y|* [*] (1 — w?)*gypo(z + iyw) dw.
3. Conclusion

These results lead to two main applications:

from Gauss to Fuclid: then, we have t — 1, Ayya; — A2 = 1, and ¢440; — g2 = @%ﬂ;

from Gauss to LLL: considering n vectors by, ..., b, uniformly distributed in B,,, the unit ball of
R”, with [; the length of the ¢-th orthogonalized, the initial density has valuation n —¢— 1, and we
can apply our results with use of Gy 4,4 [1].

We showed how to “inverse” the operator U of the Gaussian algorithm by use of a functional
operator G,. An open question is the generalization of such a method to other algorithms.
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