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Abstract

Divergent series arise naturally in many different contexts. This talk describes mixed
symbolic-numerical algorithms to deal with these series when they arise from linear differ-
ential equations.

Introduction

A simple example of a divergent numerical series is obtained when summing a Taylor series
outside its circle of convergence. More violent divergence is encountered when solving a linear
differential equation like the Euler equation

2y +y==a
by an undeterminate coefficient method. The power series one obtains is the Euler series

E (—=1)*nla"*!,

n>0

which has a radius of convergence equal to 0. This problem also occurs in non-linear differential
equations, singular perturbations, difference equations, or asymptotic analysis (e.g., by the Laplace
method).

The Borel-Ritt theorem states that any power series on any sector of finite opening in the
complex plane is the asymptotic expansion of a function which is analytic in the sector. However,
this analytic function is far from being uniquely determined, which makes numerical evaluation
hopeless. In the context of differential equations the situation is much better because of the
following result.

THEOREM 1. Let G(z,9o,...,yn) be an analytic function of n + 2 variables and f e Cllz]] a
formal power series solution of G(z,y,...,y"™) = 0. Then there exists a real number k > 0 such
that for all open sectors V. with vertex at the origin, opening < w/k and small enough radius, there
exists a function f which is a solution of the differential equation G(z,y,...,y"™) = 0 asymptotic

to fonV.

Thus the main numerical problem is to devise techniques that will sum the divergent series not
to values of any analytic function asymptotic to it, but to values of the actual solution of the
differential equation corresponding to it.
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1. Elementary methods

To compute the sum of a convergent power series ) a,z" outside its circle of convergence, one
first has to define a path connecting the origin to the point where the sum is desired. A basic
subproblem is that of summing along a ray originating at the origin and avoiding singularities of
the function. Lindel6f gave a simple way of doing this by computing this value as the limit of

ag + lim g a,xe inlosn
t—0
n>1

When the series is convergent at z, the result is the sum of the series. This technique was generalized
by Hardy to sum divergent series of the same type as the Euler series, by computing

(1) ag + a1z + asz? + lim g a,x"e tlognloglogn
t—0
n>3

Unfortunately, this technique does not behave very well numerically.

The simplest efficient technique to deal with divergent series of the type of the Euler series is
called summation to the least term. For instance, the values of the successive terms of the Euler
series at = 1/10 are

.100000, —.010000, .002000, —.000600, .000240, —.000120, .000072, —.000050, .000040, —.000036,
.000036, —.000040,.000048, —.000062, .000087, —.000131, .000209, —.000356, .000640, —.001216.

The absolute value of the terms first decrease, then reaches a minimum at 0.000036, and eventually
increase to infinity. By summing these terms up to the smallest one, one gets the numerical
value 0.09154563200, which is very close to the value of the corresponding function solution of
the differential equation, namely 0.09156333394. Using a convergent integral representation for
the Euler series, it is not difficult to show (see [5]) that the error made by truncating this series
at its least term is exponentially small (with respect to 1/z). This property is actually much
more general (see below). The drawback of this good precision is the impossibility of obtaining an
arbitrary precision by this method. This is to be contrasted with the direct summation of convergent
power series, where the terms generally first increase before decreasing to 0, but numerous terms are
necessary to obtain a good precision. As a consequence, many techniques to convert from various
representations of a function to a divergent series have been developed [3].

2. Gevrey asymptotics, Borel transform, k-summability

A good framework to account for the nice behaviour of common divergent series is provided
by Gevrey asymplotics. A Gevrey series is a power series whose coeflicients’ growth is bounded
by C(nh)* A", for some fixed C, A,k > 0. Gevrey asymptotic expansions are Gevrey series for
which the remainder term satisfies the same type of bound. More precisely, we have the following.

DEFINITION 1. Let k be a positive real number and let V be an open sector with vertex 0. Let f
be an analytic function on V. The formal power series f = >0 @nx" is Gevrey asymptotic to f
of order s = 1/k on V if for all compact sub-sectors W of V and for all n € N, there exist Cy > 0
and Ay > 0 such that

n—1

f(z) - E apa?

p=0

< Cy (nM*AR Vee W, z#0

27"
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By Stirling’s formula, truncating a Gevrey asymptotic expansion of order 1/k to the least term
gives an exponentially small error (in 1/z*). This is one of the facets of the interest of Gevrey
asymptotics. Another crucial property, due to Watson, is that there is at most one analytic func-
tion f Gevrey asymptotic of order 1/k to a series f on a sector of opening larger than «/k. This
provides the uniqueness necessary for numerical computations based on the series alone.

With the same hypotheses as in Theorem 1, an old theorem of Maillet states that there exists & >
0 such that f is a Gevrey series of order 1/k. This result is useful in conjunction with a counterpart
of Theorem 1 due to Ramis and Sibuya which states that if f is Gevrey of order 1/k then there
exists k' > k such that for any sector V' with vertex 0, opening < 7/k" and sufficiently small radius,
there exists a function f solution to the differential equation which is Gevrey asymptotic of order k
to f. Combining these two results explains why summing to the least term is a good method for
formal series solutions of differential equations.

If f = > a,z" is a Gevrey series of order 1/k, then its Borel transform of index k is defined as

52 a
Bef)€) = vyt
= I'(14 n/k)
For k£ = 1, this corresponds to dividing the n-th coefficient by n!. Estimates on the coefficients
show that this transform is an analytic function ¢(£). Then if the Laplace transform of index &

f(z) = /f@ﬁ(f)e—f”“f’“—ldf

converges, it is called the sum of f in the direction d, where d is a straight line from 0 to infinity.
The series f is then said to be k-summable in the direction d. The convergence of this integral is
related to the growth of ¢ at infinity. It is easy to see that the Taylor series of f is precisely f S0
that this process yields a convergent representation for f . The sum however depends on the path
of integration d, in the same way an analytic continuation depends on a path. This dependency is
related to the Stokes phenomenon.

Numerically, in the case of convergence, the problem is reduced to finding k£ and computing the
analytic continuation of ¢. In the case of solutions of linear differential equations, this computation
is simplified by noticing that & can be deduced from the slopes of a Newton polygon associated with
the linear differential equation and that ¢ satisfies a linear differential equation derived formally
from that satisfied by f . Therefore its Taylor coefficients satisfy a computable linear recurrence
which can be used to obtain many coefficients efliciently. Besides, the possible singularities of ¢ are
located at the zeroes of the leading coefficient of the linear differential equation it satisfies, so that
it is possible to compute the continuation along a path which avoids singularities, with a knowledge
of the exact radius of convergence of the power series one is computing. This process can also be
applied to the divergent series that occur as part of the asymptotic expansion of solutions of linear
differential equations at an irregular singular point, by first computing a linear differential equation
satisfied by these series.

3. Multisummability

Not all solutions of linear differential equations are k-summable for some k. One reason for this
is that the order of growth of an analytic function at infinity is related to the growth of its Taylor
coeflicients at the origin. Thus by adding a 1-summable and a 2-summable divergent series, one
obtains a series which is Gevrey of order 1, but the growth at infinity of its Borel transform of
level 1 is exponential of order 2. This leads to the consideration of a more general class of divergent
series.
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DEFINITION 2. Let ky,...,k, be real numbers such that k&, > --- > k. > 0 and let d be a line
from 0 to infinity. A formal power series f(:v) is (ki,...,k,)-summable in the direction d if there
exists a positive integer m such that f(ml/m) is a sum of r series fl, .. .,fr, each fl being k;/m
summable in the direction d.

A result of Jurkat is that Hardy’s summation technique (1) will sum any multisummable series
without having to know kq,...,k,.
The following recent theorem due to Braaksma demonstrates the relevance of multisummability.

THEOREM 2. Let G(z,Yo,...,yn) be an analytic function of n + 2 variables and f e Cllz]] a
formal power series solution of G(z,y,...,y"™) = 0. Let ky > --- > k. > 0 be the positive slopes

of the associated Newton polygon. Then f is (ki,...,k.) summable in every direction d, except
possibly a finite number of them.

Braaksma’s proof uses Ecalle’s theory of accelero-summability.

In the linear case, a technique due to Balser makes it possible to compute the sum by computing
successive Borel transforms of indices x; related to the k;’s by 1/k; = 1/k1 4+ -+ -4 1/k; and then
recovering the function by computing the corresponding Laplace transforms of order &; in reverse
order. At each step, exact linear differential equations can be computed for the various Taylor
series and exact linear recurrences for their coefficients.

Conclusion

Numerically, the difficulty is that each level of integration is time consuming and induces a
precision loss. At the moment, this process is still largely interactive, notably the choice of paths
of integration at each step.
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