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Abstract

Order statistics, such as the distribution of the maximum of n random variables, are
usually studied from a probabilistic point of view. This talk presents an analytical approach
that can be applied to a sequence of independent random variables, and to dependent vari-
ables. Applications include statistics on digital structures, the analysis of a leader election
algorithm, and an extension of probabilistic counting.

1. Order statistics

Let X, X,,..., X, be asequence of discrete random variables; the order statistics is the sequence
arranged in nondecreasing order: X1y < X(5) < --- < X(,,). The classical theory of order statistics
takes place in a probabilistic frame; see for example [2] or [12].

Assume that the variables X; are ezchangeable: the n! permutations X; ,..., X; have the same
joint distribution [3, p. 228].! Define M,, = max{X,..., X,,} as the maximum of the n variables.
By the inclusion-exclusion principle, we have that

(1) Pr{M, > k} = Xn:(—1y+1 (:‘) Pr{X, >k, ..., X, >r}.

Define
F(z) =Y Pr{X, > k,...,X, > k}2"  M,(z) = Y Pr{M, > k}:".

k>0 k>0
Then Equation (1) translates on the generating series as
M, (2) =Y (-1 (“)mz).
r=1

Hence the generating function of M,, (or of the rth-ranked variable of the sequence) is expressed
by an alternating sum, which suggests that a Mellin-Rice approach to the asymptotics might be
successful (see for example [6] for a general introduction to this subject).

! Another definition of exchangeable variables might be: for any subsequence {i;} s.t. 1 <i; < -+ <4, <
n, Pr{X;, <z1,...,X;, <z} =Pr{Xy < 21,..., X, <z} .

7



2. The independent case: the probabilistic approach

2.1. Continuous random variables. In the continuous case, the X; are ii.d. and contin-
uous; there exist two sequences of normalization constants {a,} and {b,} and a function H s.t.
lim, 4o Pr{(M, — a,)/b, < x} = H(x); then H is the limiting distribution of the (normalized)
maximum M,,.

The theory of asymptotic distribution of extremes was initiated by Fischer and Tippett in 1928,
and further developed by Gnedenko around 1943; see for example the books by Galambos [7] or
Resnick [12] or the presentation given by Sweeting in [13]. The behaviour of the tail determines
the limiting distribution H(z) (see for example [2, p. 210] or [7, p. 51-52] for complete conditions).
The limiting distribution of the normalized maximum sample has one of the following types: (i)
If Pr(X; > tz)/Pr(X; > ) — 27 (a > 0) for t — 400, then H(z) = exp(—2z~°) for z > 0 and
H(z) = 0forz < 0; (ii) If there exists a finite A s.t. Pr(X; < A) =1, and Pr(X; > A—ex)/ Pr(X; >
A—¢) — z® for ¢ — 0, then H(z) = exp(—(—2)*) for ¢ < 0 and H(z) = 1 for z > 0; (i) If
Pr(X; >t+aE(X;, —t|X; > 1))/ Pr(X; >1t) — e " for t — +o00, then H(z) = exp(—e~%) for all z.

The normalization constants a,, and b, might be seen respectively as a shift and a scaling factor.
They are not necessarily unique: see [2, p. 209] or [12, p. 86] for a discussion of this point; Galambos
devotes a whole section of his book to discussing possible choices [7, p. 57-63]. In good cases, a,
and b, correspond to the limiting mean and variance; see [12, p. 84-85] for conditions that ensure
that we can use the mean and variance as scaling factors.

When it is possible to prove conditions on the tail distribution, such as an exponential tail, the
asymptotic mean can be computed as: a, = inf{z : Pr(X; > z) < 1/n}.

2.2. Discrete random variables. In this case, Anderson [1] (see also [7, p. 120, ex. 8]) gave a
necessary condition for the existence of a,, and b, s.t. the normalized random variable (M, —a,)/b,
converges to a non-degenerate limiting distribution: Pr(X; = k)/ Pr(X; > k) — 0, k — oc.

The existence of a limiting distribution is a strong property, which is not always verified; in some
cases we can prove a weaker result on the existence of an asymptotic distribution, which might not
imply a limiting distribution because of fluctuations. An example of this happens when the X;
follow a geometric distribution: Pr(X; = k) = p*(1 — p) for & > 0. Then it is possible to prove
that Pr{M, < |log,,, n+ m]} ~ exp (—pm‘{l"gl/p"‘*‘m}) . Because of the fluctuating nature of the

fractional part {t} = ¢ — ||, this expression oscillates between e~?" and e "

3. The independent case: the analytical approach

For i.i.d. variables X;, we have Pr{X; > k,..., X, > k} = (P{X; > k})". Hence I = X©@, with
XOz) =Y, (Pr{X > k})" 2" standing for r Hadamard products.

When the distribution of the X; is a sum of geometric distributions, their g.f. is X(z) = a/(1 —
pz)® for some constants a, p and d. Now, for integer d, the coefficient [2"] X(z) is equal to a("ﬁ;l)p"
and we can compute a uniform approximation of FT(Z)I

- (dr —r)la” ( 1 )
Fr(z)= O ——F+—— .
B = @y payn PO G rey

From now on a Mellin-Rice approach can be used, to obtain

THEOREM 1. Let a, =logn + (d — 1)loglog n — logI'(d); then for any integer k

1 k+14{an
Pr(M, < a, + k) = me"’ P 4 oo(1).

78



4. Digital structures

4.1. Depth in a trie. Consider a trie built on n independent random uniform binary sequences
Siy1 < i< mn,of 0and 1. Define D, as the average depth of an external node [14]; this quantity
is related to the number of nodes visited during a successful search. The analysis of D,, leads to
considering the length C; ; of the longest prefix common to the sequences S; and S5;: D, has the
same distribution as max{C} »,...,C1,}. Although the C;; are dependent, we still have

n

2) Pr{D, > k} = %Z(—Ur (Z)rpr{cm > k,...,Co > k).

r=2

The Bernoulli model. In this model, Pr{C1 > > k,...,C1, > k} = (p" + ¢")*. Define C/};(Z) =
> ko PT{D, > k}2*; the relation (2) on D, translates into an equation on G,,(#), which gives after

some computations
- 1 —3/24i00 —s—lr 1 1
Gn(z):f/ RERACE )d5<1+0<—)).
27 J_gj2—ice 1 —2(p~* +¢7*) n

In the asymmetric case, D, follows a normal limiting distribution, with asymptotic mean p, ~
(1/h)logn and variance o2 ~ clogn; the constant ¢ is (hy — h?)/h®, with h = —plogp — qloggq
and h, = plog’p + ¢qlog”q. The proof relies on Goncharev’s condition, characterizing a normal
distribution from its g.f.: lim,_ ., e=##/7= G, (e*/7») = ¢**/2, In the symmetric case (p = ¢ = 1/2),
the variance is O(1) (¢ = 0), which suggests that Goncharev’s condition does not hold and that
we cannot expect a normal limiting distribution. Indeed, the asymptotic distribution fluctuates

according to the fractional part of log, n: Pr{D, <log,n + k} ~ exp(—2k+i+{log2n}) /100 2.

The Markovian case. In the Markovian model, the next symbol depends on the previous one only;
the probability p; ; of obtaining the letter ¢ after the letter j is given by a matrix P. It is possible
to write an equation on the g.f. of the depth D, and a similar analysis [8] shows that D, again
tends to a normal limiting distribution, with a variance of order logn, except for the symmetric
independent model, where the variance is O(1).

4.2. An open problem: height of a trie. The approach outlined in Section 4.1 fails When
one considers the height of a trie, defined as the maximal depth of all leaves: H,, = max{C, ;,1
i < j < mn}. The catch here is that the variables are not exchangeable.

4.3. Depth of a digital search tree. Consider a digital search tree built on n independent
keys in the Bernoulli model; as for a trie, let D, be the average depth of an external node, and

define E B, (k) as the average number of internal nodes at level k. Then Pr{D, =k} = E B,(k)/n.
The generating function B, (u) := 3,5, E B,(k)u" satisfies the recurrence equation

B —1+u2( )P’Q” "(Bj(u) + Bpnoj(u)),

whose solution can be expressed in terms of Q,(u) = Hf;l(l — (PP + ¢/ )u). Again the asymptotic
distribution in the symmetric case fluctuates with n, and a central limit theorem can be proved in
the asymmetric case [10].

The Lempel-Ziv algorithm for data compression can be modelled by a digital search tree built
on independent keys, when the number n of parsed words is known, and its performance can be
expressed in terms of parameters of the tree such as the average depth of an external node. A
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different model considers that the pertinent information is the length of the sequence to be parsed;
again this can be modelled by a digital search tree, now with dependent keys. It is possible to
prove (see [10]) that the distribution of the length of a random phrase is asymptotically the same
as the limiting distribution of the depth in the first model, with a digital search tree built on
m = |nhlogn| nodes (here again h denotes the entropy of the alphabet: h = —plogp — ¢qlogq).

4.4. A leader election algorithm. The algorithm for the election of a loser, analyzed by
Prodinger in [11], can be dealt with in a similar manner [4]. The principle of the algorithm is
as follows: At the beginning, all players are active; at each step, the active players throw a coin
randomly and independently and the set of active players for the next step is exactly those who
throw tail, or all the former players if all of them throw heads; the algorithm ends when a single
player throws tail. The number of steps required by the algorithm to choose a loser is the height
H,, of the leftmost leaf of a trie. The analysis begins with the study of the Poisson model, where
the number of keys follows a Poisson distribution, then goes on to extract the statistics for the
Bernoulli model by a Depoissonization Lemma.

4.5. Probabilistic counting. This generalization of an algorithm by Flajolet and Martin [5],
using an array of integers instead of a bitmap, is presented in [9].
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