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Abstract

John Shackell proves a conjecture of Hardy, which states that the inverse function of
loglog z logloglog « is not asymptotic to any exp-log function. In order to prove this, he
uses his technique of nested forms.

1. Introduction

Hardy was the first to study systematically the notion of exp-log functions in the context of
asymptotic expansions [3, 4]. These functions are built up from Q or R by the use of field operations,
exponentiation and logarithm. Examples are

exp(z + log(z* + €”)), and log(log(z® + exp(1995z)) + 2).

He established that the sign of any exp-log function is constant in a neighbourhood of infinity. This
property makes exp-log functions extremely useful for doing asymptotics. Although many functions
one encounters in practice are asymptotic to some exp-log function, Hardy conjectured that this
is not the case for the inverse function ®(z) of log, = logs , where the index denotes iteration. In
other words, ® is defined by

loglog ®(z)logloglog ®(z) = =.

Now it is known since Liouville [5] that the inverse function ¥(z) of zlogz is not an exp-log
function. In his talk Shackell shows how to deduce Hardy’s conjecture from this result.

In order to do this, Shackell uses his technique of nested expansions, which was originally designed
to construct algorithms for doing asymptotics. Although Shackell also spoke about these issues in
his talk, we will only recall the material which is necessary in order to prove Hardy’s conjecture. For
more details about the algorithmic aspects of asymptotics, we refer to [1, 2, 6, 7, 8,9, 10, 11, 12].

2. On nested expansions

We start with some definitions. Let f; and fo be exp-log functions which tend to zero. We say
that f; and f, are comparable or of the same asymptotic scale, if there exist positive integers m and
n with fi < f* and f, < f' (recall that the germs of exp-log functions at infinity form a totally
ordered field). The comparability relation is an equivalence relation and we denote the equivalence
class of f by v(f). The equivalence classes can be ordered by v(f1) > v(f2), if fi < f5 for all
positive integers n.
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Let us also introduce the concept of z-functions. Such a function is one of the following;:

zexp,(t) =t "(exp(t) = 1 -t —---—1"/n!),
Aog, (1) = 1" (log(1 + 1) — 1 — -+ — (~1)" 1" ),
zZinv, () = 7" (1/(1+ 1) =14+t — - = (=1)" 71",
for any integer n > 0. If ¢1,...,t, are exp-log functions which tend to zero, we denote by

Z(ty,...,ty) the set of functions which can be obtained from ¢,,...,%, by using addition, sub-
traction, multiplication and application of z-functions. Shackell proved the following theorem [8].

THEOREM 1. Let f be an exp-log function which tends to infinity. Then there exist exp-log
functions t1,...,ty, with v(ty) > -+ > (1), such that f can be expressed as f = exp,((k + z)L),
where exp, is the r-th iterated exponential, k is a non zero constant, L is a product of real powers
of iterated logarithms, and z belongs to Z(ty,...,t,y).

The expression f = exp, ((k+2z)L)is called a nested form of f. More generally, one can recursively
compute nested forms for ¢y,...,1,,. Doing this, one obtains so called nested expansions. Shackell
and Salvy have shown how to obtain automatically nested expansions of the functional inverses of
exp-log functions [7], modulo suitable hypotheses on exp-log constants.

3. The solution to Hardy’s conjecture

Denote by ¥ the inverse function of zlogz, and recall that & = exp, ¥ denotes the inverse
function of log, z logy . The following lemma is crucial for the proof of Hardy’s conjecture.

LeMMA 1. There is no exp-log function [ such that
|f - \Ijl S 6_6\/57
for all 6 > 0.

ProOF. Assume that such a function f exists. It can be shown (using the same notations as in
the above theorem), that one can find z € Z(ty,...,1,,) such that

x

f= (14 2)

log z
Now replace all terms in the Laurent series expansion of z in ¢4, ...,{,,, which have equivalence class
superior or equal to 7(e¥?) by zero. Let 2 be the series so obtained and denote f = (z/logz)(1+2).
Then it can be shown that f is an exp-log function, so that modulo changing é, we may assume
without loss of generality that v(¢;) < --- < 7(t,,) < 7(e¥®).
Now it is easily seen that

|flog f —a| = |flog f — Wlog ¥| < e~*V7,

for some suitable ¢’. But flog f and z are both analytic functions in z,log z,log, z,%,,...,%,,, so
that we must have flog f = z. But this is impossible by Liouville’s theorem. Hence, we obtained
the desired contradiction. []

THEOREM 2. There does not exist any exp-log function which is asymptotic to the inverse func-
tion of log, x log, x.
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Proor. Since ¥ = z/logV¥ = z/(logz — log, V), we have

¢ = exp,(z/(logz — log, ®)).

Now let ¢ be asymptotic to @, so that logg —log ® = o(1). Then
logg/log® = 1+ o(log™" @) = 1 + o(exp((c — 1)z/logz)),

for any ¢ > 0. Hence

|log, g — log, ®| < exp~?VZ,
for all 6 > 0. By the lemma, it follows that log, g cannot be an exp-log function. Hence neither is
g. O

This theorem shows that the scale of all exp-log functions is not sufficient to do asymptotic
expansions of functional inverses. This shows that one essentially needs more general asymptotic
scales, or an alternative way to represent asymptotic series. One of the candidates for such an
alternative way of representing series is Shackell’s technique of nested expansions.

Bibliography

[1] Geddes (Keith O.) and Gonnet (Gaston H.). — A new algorithm for computing symbolic limits us-
ing hierarchical series. In Gianni (P.) (editor), Symbolic and Algebraic Computation. Lecture Notes in
Computer Science, vol. 358, pp. 490-495. — New York, 1989. Proceedings ISSAC’88, Rome.

[2] Gonnet (Gaston H.) and Gruntz (Dominik). — Limit Computation in Computer Algebra. — Technical
Report n° 187, ETH, Zurich, November 19g92.

[3] Hardy (G. H.). — Orders of Infinity. — Cambridge University Press, 1910, Cambridge Tracts in Mathe-
matics, vol. 12.

[4] Hardy (G. H.). — Some results concerning the behaviour at infinity of a real and continuous solution
of an algebraic differential equation of the first order. Proceedings of the London Mathematical Society,
vol. 10, 1911, pp. 451-468.

[5] Liouville (J.). — Suite du Mémoire sur la classification des transcendantes et sur les racines de certaines
équations en fonction finie explicite des coefficients. Journal de Mathématiques Pures et Appliquées,
vol. 3, 1838, pp. 523-546.

[6] Salvy (Bruno). — Asymptotique automatique et fonctions génératrices. — Ph. D. Thesis, Ecole polytech-
nique, 1991.

[7] Salvy (Bruno) and Shackell (John). — Asymptotic expansions of functional inverses. In Wang (Paul S.)
(editor), Symbolic and Algebraic Computation. pp. 130-137. — ACM Press, 1992. Proceedings of IS-
SAC’92, Berkeley, July 1992.

[8] Shackell (John). — Growth estimates for exp-log functions. Journal of Symbolic Computation, vol. 10,
December 1990, pp. 611-632.

[9] Shackell (John). — Limits of Liouvillian functions. — Preprint, 1991.

[10] Shackell (John). — Inverses of Hardy L-functions. Bulletin of the London Mathematical Society, vol. 25,
1993, pp.- 150-156.

[11] Shackell (John). — Rosenlicht fields. Transactions of the American Mathematical Society, vol. 335, n° 2,
1993, pp. H79-595.

[12] van der Hoeven (J.). — Asymptotique automatique. — PhD thesis, Ecole Polytechnique, France, 1995. In
preparation.

83



