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1. Introduction

String searching can be generalized to “multidimensional search” or “multidimensional pattern
matching”: a multidimensional pattern, p, most often an array and usually connected and convex,
is searched in a multidimensional array, the text, {. A strong interest appeared recently [3, 2,
4]. Notably, the duel paradigm improves average and worst-case complexity of pattern matching.
Knowing for each position of self-overlap a mismatching position—the witness—allows to eliminate
one of the two candidates by one question—the duel. One studies here pattern periodicities and
space coverings. One proposes a period definition valid in any dimension and consistent with the
more general definitions in dimension 1, i.e. on words. We prove here that a periodic pattern is
generated by a subpattern, and the subpattern, as well as the generating law and the link to the
regular distribution of periods, is exhibited. The exceptions to this regularity , the degenerated
periods, are interpreted as “border effects”. They derive from some regularity of the generating
subpattern, a basic phenomenon in dimension 1. This allows for a classification of periodicities valid
in any dimension, and detailed in dimension 2. Notably, the number of periodicity classes appear
linear in the dimension. Also, one provides a full characterization of sources positions, including
the degenerated ones that are essential to the design and correctness of 2D pattern matching
algorithms. This considerably refines and achieves the previous classification by [1], and even the
extended results in [4], and allows for a classification of space coverings, where non-degenerated
periodicities appear essential. Omne exhibits relationship between the periods of a pattern and
the possible space coverings by the same pattern. This is relevant both to the derivation of the
theoretical complexity of d-dimensional pattern matching and to algorithmic issues.

The simple remark that the set of invariance vectors almost has a monoid structure provides the
link to the well studied periodic functions in Z9. Using their properties leads to a great simplification
of the proof of previous results in the area. Additionally, it provides tools for a generalization to
any dimension. Finally, the paper provides knowledge to derive efficient pattern preprocessing. In
particular, the characterization of minimal generating sub-patterns reduces (partially) periodicity
and witness computation to well known problems on words. This allows for using the large toolkit
of 1D algorithms to determine periodicities. A preliminary version of this work appeared in [6].

2. Formalism

Basic Notations. A d-dimensional pattern p is a d-dimensional array whose values range on some
alphabet A. Given a vector @, we denote 4[¢] or @; its ¢-th coordinate. Let P be the set of vectors
i such that |@[é]| < I; where [; is some integer, called the i-th dimension of p.
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Ficure 1. Radiant biperiodic pattern

DErFINITION 1. Two vectors @ and ¥ are said in the same direction if and only if, for any ::
@;.; > 0. A vector @ dominates a vector ¥ in the same direction if and only if, for any 4, |7;| < |;].
A vector ¥ is minimal if it does not dominate any vector.

We are interested in shifts such that the two copies are consistent in the overlapping area.

DEFINITION 2. A vector u is an invariance vector for p if and only if, for any ¥ € P, one has
pl¥ + 4] = p[d]. A couple (@, 7) of invariance vectors is said an invariance couple if and only if
Vj 132 lui+v;| < I;. Tt is simple if & and ¥ are collinear. These invariance vectors are said simple.

We note I the set of invariance vectors.

3. Main results

Lattice distribution of invariance vectors. If a pattern p admits a non-simple invariance couple, it
is said biperiodic (see Figure 1). We have:

DEerFINITION 3. Given a lattice L with basis (4, 7), we denote F'Cyz 7z = {A0 4+ pv;0 < A, p < 1}
A S-path is a chain @ ... W, of vectors in p such that, for any ¢, either @, — @; or @; — W;4; is in
S. Given two vectors (4, ¥), the free zone F'Zz; is the set of points @ in p such that there exists
no (i, ¥)-path interior to P to F'Cy 7. The periodicity domain is p — FZz . The border is:

B =p— Uz ger{d | (& + &, @ + §) € p*, dir(¥) = dir(Z) = dir(y)}.

—

THEOREM 1. Let p be biperiodic. For any invariance couple (4, %) exists a lattice L such that:
(1) ICLUBUFZz3,
where B is the border of L. If L admits two simple vectors, then (1) reduces to:
(2) ICLUB.

(@, 7) is said a non-degenerated invariance couple and L is said a non-degenerated lattice. A
pattern admits at most one non-degenerated lattice, called the canonical lattice and denoted Ly

where (E, F) is a basis. The invariance vectors in I = I — By z are named the non-degenerated
invariance vectors. p is said a non-degenerated biperiodic pattern.

Figure 1 provides an example where £ = [4,4] and F = [6,2]. It is worth noticing that a basis
is not necessarily made of invariance vectors: this is intrinsically 2D. Similar phenomena occur
on any set of collinear vectors: e.g. a regular distribution of invariance vectors and a degeneracy
paradigm.
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Periodicity classification. A pattern is:

(1) non-periodic: no invariance couple
(2) monoperiodic: exists one simple invariance couple; all invariance couples are simple.
(3) biperiodic: exist one non-simple invariance couple. If the associated lattice is non-degenerated,
the pattern is said non-degenerated biperiodic. It divides into two subclasses:
(a) fundamental biperiodic or lattice periodic: all lattice vectors are invariance vectors.
(b) non fundamental biperiodic or radiant periodic: all invariant lattice vectors are in the
same direction.

Word properties. It appears from our example kind of a word repetition. In 1D, minimal generators
and periods are based on primality notion on words. Extending this primality notion to dimension
2. provides an alternative point of view to the characterization of I as a subset of a lattice Lz z
plus its border Bz p- As a major algorithmic consequence, it allows for using 1D algorithms to
search for periodicities, hence witnesses. Also, it simplifies the proofs [7].

DEFINITION 4. Let p be a non-degenerated biperiodic pattern. Let (E, ﬁ) be a fundamental basis
such that a fundamental lattice cell F'Cz 5 is in the periodicity domain. Denote ¢ its direction, and

j the other direction. Let § = GCD(E;, F;) and L = inf{k > 0;ké; € L p}. Define for any (A, )
in[0...L—1]x[0...6 —1], @, , as the only vector in FCz s such that:

Wy, — (A& + p€j) € L p.

Let p, , be p[@, .]; let s, be the primitive word associated to the word pg ,—1...pr—1,-1. The
sequence (s, )i1<u<s is the linear canonical generator in direction 1.

Remark that the existence and uniqueness of ), , is a direct consequence of Fuclid’s theorem
and that (£, F)-periodicity implies that (s;) is independent of the fundamental basis chosen.

THEOREM 2. Let p be a non-degenerated biperiodic pattern, and (s;)1<i<s be the associated linear
generator. Then, any vector W in the periodicity domain and in the same direction satisfies:

(3) plw] = s,(A mod [s,])

where (A, p) is defined by the equation @ — @, € Lz p. One has L = GCM([s,|) = lFCf’ﬁl.

Intuitively, a biperiodic pattern p is made of é patterns that repeat indefinitely, except maybe
for the borders: rows (or columns) ¢, ¢ € {1...6} are linear concatenations of strings s} and row
J+ 6 is equal to row j shifted by some value a. In Figure 1, we have §; = 6, = 2 and s; = abede fgh
and s, = ijklmn.

Position of sources. . We remark that (3) holds for any @ if p is fundamental biperiodic. We show
that if a vector @ in Lz 5 NT is not an invariance vector then P contains a point that violates
(E, ﬁ) periodicity: capital characters in Figure 1. Extremal such points, [15,2],[16,0] and [1,8],
lead to the exclusion of [8,0],[6,2] and [0, 8] from I (represented by bolded a).

Mazimal Coverings Classification. One proves that two copies of p shifted by @ and ¥ are mutually
consistent if and only if @ — @ is an invariance vector or pz N p; = . One defines a (@, ¥)-lattice
covering as a set of interleaved i-overlapping sequences where two neighbouring sequences are
shifted by . It is regular if & + ¢ € T, else it is said extended. It steadily follows:

THEOREM 3. A mazimal covering of the 2-dimensional space by a patlern p is either of the three:
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(1) tiling,

(2) a tiling of i-overlapping sequences where @ is a minimal invariance vector.

(3) a (4, 7)-lattice coverings. It is regular and (4, %) is a basis of the canonical lattice if p is
biperiodic; otherwise il is extended.

Remark that extended lattice coverings are an extension of the covering notion, where some
“holes” appear in the representation. This is pertinent for algorithmic issues as it allows to deter-
mine the mazimum number of occurrences of a given pattern, a parameter related to the worst-case
complexity.

4. Hints for the proofs

One shows that the sum of invariance vectors is an invariance vector almost everywhere, and
characterizes this zone of non-invariance, the free zone, that creates “border effects”. This additive
property allows to use general results on biperiodic functions on Z? and prove a lattice distribution
of almost all invariance vectors. Notice this vectorial approach provides a very short proof of the
previous results in [1, 4]. Many proofs rely on the Factorisation Theorem [5]: equation ab = ba
implies that ¢ and b are powers of a same primitive word. For example, in Theorem 2, equation
(3) implies that, for any pu, |s,| divides L. Otherwise, for some j, one has L mod |s;| = a # 0.
With @ = s;4[1]...s;[a] and b = s;[a+1]...54[|s;|], s; factors as s; = ab = ba which contradicts the
primitivity. Hence, GC'M(|s;|) divides L. Also, (3) implies that GC M (|s;|)€; is a lattice vector,
hence Lé;, by the minimality property.

A major consequence of these word properties is the possibility to compute the linear generator,
hence the fundamental basis, from any fundamental parallelogram. One initially computes § as
GCD(i;,7;) and L as inf{k;ké; € Lz z}. For each of the § sequences p, , defined, one can extract
the associated primitive word s;. One may use the well known 1D algorithm that searches for the
primitive seed of a word (for instance the preprocessing of Knuth-Morris-Pratt). Then, one can
compute all witnesses between two sequences s; and s;. This determines whether the set is cyclic

(not minimal) and (E , F ) steadily follows. An implementation and other applications are described
in [7].
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