Reversing a Finite Sequence

Loïc Pottier INRIA Sophia Antipolis

March 6, 1995

[summary by Philippe Dumas]

The concept of reversing a finite sequence is best introduced by an example. Define a sequence of vectors x_i by the formula $x_i = f_i(x_{i-1})$ for $i = 1, \ldots, p+1$; here x_0 and the functions f_i 's are given. More precisely the functions f_1, \ldots, f_p map \mathbb{R}^m into \mathbb{R}^m and the last one f_{p+1} maps \mathbb{R}^m into \mathbb{R} . For each i, the variable x_i is a function of $x_0, x_i = g_i(x_0)$. Moreover let us assume that all these functions are differentiable. We want to compute the Jacobian matrix $J_{g_{p+1}}(x_0)$, which expresses the partial derivatives of x_{p+1} with respect to the components of x_0 . By the chain rule, this matrix is expressed as a product of matrices,

$$J_{g_{p+1}}(x_0) = J_{f_{p+1}}(x_p) \times J_{f_p}(x_{p-1}) \times \cdots \times J_{f_1}(x_0).$$

The matrix $J_{g_{p+1}}(x_0)$ is a row matrix of type $1 \times m$, while the matrices in the product are square matrices of type $m \times m$ except the leftmost one, which is a row matrix of type $1 \times m$. The first idea which comes to mind is the following. We compute $J_{f_1}(x_0)$ and we store it; next we compute x_1 , the Jacobian matrix $J_{f_2}(x_1)$ and the product $J_{g_2}(x_0) = J_{f_2}(x_1) \times J_{f_1}(x_0)$; we store this product, we compute x_2 , the matrix $J_{f_3}(x_2)$, the product $J_{f_3}(x_2) \times J_{g_2}(x_0)$ and so on. At each step of the computation, we store a $m \times m$ matrix. If m is large (a value of about 10^6 is possible), this method is not practical. So, we apply another strategy. We first compute x_p and the Jacobian matrix $J_{f_{p+1}}(x_p)$; we store it; next we compute x_{p-1} and the Jacobian matrix $J_{f_p}(x_{p-1})$; we compute the product $J_{f_{p+1}}(x_p) \times J_{f_p}(x_{p-1})$ and we store it, and so on. The gain of storage is evident: each time we store a $1 \times m$ matrix in place of a $m \times m$ matrix. But there is a waste of time because we compute again and again the values x_1, \ldots, x_p . Obviously, we could store these values but the available memory has a limited size.

The problem of reversing the sequence x_0, x_1, \ldots, x_p may be now formulated. We want an algorithm which provides the values $x_p, x_{p-1}, \ldots, x_1$ in this order and costs the minimal amount of time, knowing that each computation $x_i = f_i(x_{i-1})$ takes one unit of time and only r values may be stored at a time. Such an algorithm provides the value x_i only by computation from the previous value x_{i-1} or by retrieval from memory. Several authors have addressed this problem. Baur and Strassen [2] used the idea we presented as an introduction to study the complexity of partial derivatives. Abbot and Galligo [1] gave an optimality result in the framework of divide-and-conquer algorithms: for such an algorithm, one chooses an index q between 1 and p, one deals first with the sequence x_1, \ldots, x_{q-1} . Grimm, Pottier and Rostaing-Schmidt [3] considered all the algorithms and showed that algorithms of divide-and-conquer type provide the optimal time of computation T. In practice, it is necessary to find a trade-off between r, the number of registers, and T, the number of computations, hence the important quantity is the product rT. Grimm, Pottier and Rostaing-Schmidt gave a lower bound for the product (r+1)T, which is rather tight and shows that the product rT has order $p \ln^2 p$.

FIGURE 1. The diagram show the reversing of a sequence x_0, \ldots, x_6 with 3 registers. Column j corresponds to term x_j for j = 1, ..., 6. The symbol > means that the value is computed but not stored; the symbol S means that the value is computed and stored; P means the values is calculated, printed and then thrown away; R means the value is retrieved from memory, printed and then thrown away. The list X_j gives the indices k of the values x_k which are stored just before term x_j is printed. The total number of symbols >, S or P provides the time of computation.

1. Reduction to divide-and-conquer algorithms

The search for an optimal algorithm needs a careful definition of what is an algorithm in this context. The following definition is proposed.

DEFINITION 1. A reversal table of the sequence x_0, \ldots, x_p with r registers is a family $(X_{i,j})$, $0 \le i \le r_j$, $0 \le j \le p$, such that

- $\begin{array}{ll} \ X_{i,j} < X_{i+1,j} \ \text{for} \ 0 \leq i < r_j, \ 0 \leq j \leq p; \\ \ X_{0,j} = 0 \ \text{and} \ X_{r_j,j} = j \ \text{for} \ 0 \leq j \leq p; \\ \ r_j \leq r \ \text{for} \ 0 \leq j \leq p. \end{array}$

The definition must be understood in the following manner. The list $X_j = (X_{i,j})_{0 \le i \le r_j}$ provides the values x_k which are stored just before the value x_j is printed. More precisely the list contains the indices k arranged in increasing order. See Figure 1 for an example. Notice that the value x_0 is stored for free because the register used is not taken into account; in fact there are r+1 registers

To each reversal table $X = (X_{i,j})$ is associated its time of computation

$$t_X = \sum_{\substack{0 \le i \le r_j \\ 0 \le j \le p}} t_{i,j}, \quad \text{with} \quad t_{i,j} = X_{i,j} - Y_{i,j},$$

where $Y_{i,j}$ is the maximal index of stored values less than $X_{i,j}$. Line 5 of Figure 1 provides the following values: $t_{4,2} = 2$ because the value x_2 may be obtained at this time only from x_0 ; $t_{4,3} = 0$ because x_3 is available from memory, and $t_{4,4} = 1$ because x_4 must be computed from x_3 . The goal is to find a reversal table X which provides the minimal time of computation t_X . The main theorem is stated as follows.

Theorem 1. There exists an optimal reversal table which is of divide-and-conquer type.

We say that a reversal table $(X_{i,j})$ is of divide-and-conquer type if there exists an index q such that

$$X_{1,p} = X_{1,p-1} = \cdots = X_{1,q} = q.$$

This means that the algorithm computes the value x_q , handles the sequence $x_q, x_{q+1}, \ldots, x_p$, and next the sequence x_0, \ldots, x_{q-1} .

FIGURE 2. The diagram shows a divide-and-conquer optimal reversing of a sequence of length p = 10 using r = 3 registers. The time of computation is T = 18.

2. Optimal time

The previous result reduces the search for an optimal algorithm to the consideration of algorithms of divide-and-conquer type.

Theorem 2. The time of any optimal reversal table of a sequence x_0, \ldots, x_p with r registers is given by

$$T(p,r) = k(p+1) - \binom{r+k}{r+1},$$

where k is any integer which satisfies

$$\binom{r+k-1}{r} - 1 \le p \le \binom{r+k}{r} - 1.$$

Moreover a reversal table of divide-and-conquer type is optimal if and only if its index q satisfies

$$\binom{r+k-2}{r} \le q \le \binom{r+k-1}{r}, \quad and \quad \binom{r+k-1}{r-1} - 1 \le p-q \le \binom{r+k-1}{r-1} - 1.$$

The first part of the assertion appears in [1]. The proof uses an auxiliary function $m_{r,s}$; this function gives the maximal length of a sequence which can be inverted using only r registers and computing only s times each value x_k in the worst case. The proof of the second part relies on the consideration of

$$f(q) = q + T(q - 1, r) + T(p - q, r - 1).$$

This function of the real variable q achieves its minimum on the interval given in the theorem and this minimum is T(p,r). This gives a functional equation for T(p,r), which translates exactly the divide-and-conquer strategy.

It must be noted that for a divide-and-conquer optimal reversal table the number r of registers is exactly the maximal number of times a term of the sequence is computed. One can observe this phenomenon in the example of Figure 2, where the terms x_1, \ldots, x_{10} are respectively computed 3, 2, 2, 2, 1, 1, 2, 2, 1, 2, 1 times.

3. Space-time trade-off

Up to now the number r of available registers was fixed. But it is natural to make the computation more efficient by choosing r as a function of p. In this context the quantity of interest is the product rT(p,r).

Theorem 3. The product (r+1)T is greater than a quantity which is equivalent to $p \ln^2 p \ln^{-2} 4$. There exist arbitrary large p's and r's such that the product (r+1)T is equivalent to $p \ln^2 p \ln^{-2} 4$.

The idea of the proof is to replace the true quantities using the approximations

$$(r+1)T(p,r) \simeq (p+1)r(k-1), \qquad \binom{r+k}{r} \simeq (r+k)^{r+k}r^{-r}k^{-k}.$$

This gives an r which minimizes the product (r+1)T. The result is illustrated by Figure 3.

FIGURE 3. The product rT(p,r) is close to $C_p = p \ln^2 p \ln^{-2} 4$ for p large. Shown here are the sequences $rT(p,r)/C_p$ for $1 \le p \le 30$ and $r = 2, \ldots, 10$.

Bibliography

- [1] Abbott (J.) and Galligo (A.). Reversing a finite sequence. Preprint, December 1991.
- [2] Baur (W.) and Strassen (V.). The complexity of partial derivatives. Theoretical Computer Science, n° 22, 1983, pp. 317-320.
- [3] Grimm (J.), Pottier (L.), and Rostaing-Schmidt (N.). A sharp lower bound on the time-space product for reversing a finite sequence. Preprint, 1995.
- [4] Morgenstern (J.). How to compute fast a function and all its derivatives, a variation on the theorem of Baur-Strassen. SIGACT News, n° 16, 1985, pp. 60-62.