Reversing a Finite Sequence

Loic Pottier
INRIA Sophia Antipolis

March 6, 1995

[summary by Philippe Dumas]

The concept of reversing a finite sequence is best introduced by an example. Define a sequence
of vectors z; by the formula z; = fi(2;_1) for ¢ = 1,...,p+ 1; here z, and the functions f;’s are
given. More precisely the functions fi,..., f, map R™ into R™ and the last one f,4; maps R™ into
R. For each 7, the variable z; is a function of zq, ; = g;(zo). Moreover let us assume that all these
functions are differentiable. We want to compute the Jacobian matrix J, ., (z¢), which expresses
the partial derivatives of z,;, with respect to the components of zy. By the chain rule, this matrix
is expressed as a product of matrices,

Jopii (T0) = Jp, 00 (@) X Jp,(2po1) X o X T g (20).
The matrix J,

g9,41(Z0) is @ row matrix of type 1 x m, while the matrices in the product are square
matrices of type m x m except the leftmost one, which is a row matrix of type 1 x m. The first
idea which comes to mind is the following. We compute Jy, (zo) and we store it; next we compute
1, the Jacobian matrix J;,(z;) and the product J,,(zo) = Jy,(21) X J;, (20); we store this product,
we compute x5, the matrix Jy,(z5), the product Jy, (z2) X J,,(20) and so on. At each step of the
computation, we store a m X m matrix. If m is large (a value of about 10° is possible), this method
is not practical. So, we apply another strategy. We first compute z, and the Jacobian matrix
Ji, .. (2p); we store it; next we compute z,_; and the Jacobian matrix J; (z,_1); we compute the
product Jy (z,) X Jg,(2,_1) and we store it, and so on. The gain of storage is evident: each
time we store a 1 X m matrix in place of a m X m matrix. But there is a waste of time because

we compute again and again the values z;,...,2,. Obviously, we could store these values but the
available memory has a limited size.

The problem of reversing the sequence zy,z;,...,2, may be now formulated. We want an
algorithm which provides the values z,,z,_1,...,2; in this order and costs the minimal amount

of time, knowing that each computation z; = f;(#;_;) takes one unit of time and only r values
may be stored at a time. Such an algorithm provides the value z; only by computation from the
previous value z;_; or by retrieval from memory. Several authors have addressed this problem. Baur
and Strassen [2] used the idea we presented as an introduction to study the complexity of partial
derivatives. Abbot and Galligo [1] gave an optimality result in the framework of divide-and-conquer
algorithms: for such an algorithm, one chooses an index ¢ between 1 and p, one deals first with
the sequence z,,...,7,, and next with the sequence zy,...,2,_;. Grimm, Pottier and Rostaing-
Schmidt [3] considered all the algorithms and showed that algorithms of divide-and-conquer type
provide the optimal time of computation 7. In practice, it is necessary to find a trade-off between
r, the number of registers, and T', the number of computations, hence the important quantity is the
product r7'. Grimm, Pottier and Rostaing-Schmidt gave a lower bound for the product (r + 1)7’,
which is rather tight and shows that the product »7 has order pln” p.

107

> S
P X6 =1(0,3,5,6)
R X5 =(0,3,5)
> S P X, =1(0,2,3,4)
R X;=1(0,2,3)
R X, =1(0,2)
P X, =(0,1)
FiGUuRrE 1. The diagram show the reversing of a sequence z, . .., z¢ with 3 registers.
Column j corresponds to term z; for 7 = 1,...,6. The symbol > means that the

value is computed but not stored; the symbol S means that the value is computed
and stored; P means the values is calculated, printed and then thrown away; R
means the value is retrieved from memory, printed and then thrown away. The
list X; gives the indices k£ of the values z; which are stored just before term z; is
printed. The total number of symbols >, S or P provides the time of computation.

1. Reduction to divide-and-conquer algorithms

The search for an optimal algorithm needs a careful definition of what is an algorithm in this
context. The following definition is proposed.

DEFINITION 1. A reversal table of the sequence zg,...,z, with r registers is a family (X ;),
0<:<r;,0<j<p,such that
- AXZ'J' < AXVH_L]' for 0 S 1 < Ti, 0 S] S P
- Xoj=0and X,,; =jfor 0 <5 <p;
—rj<rfor0<j<np.

The definition must be understood in the following manner. The list X; = (Xi,j)ogigrj provides
the values), which are stored just before the value z; is printed. More precisely the list contains
the indices k arranged in increasing order. See Figure 1 for an example. Notice that the value z; is
stored for free because the register used is not taken into account; in fact there are r 4+ 1 registers
used.

To each reversal table X = (X, ;) is associated its time of computation

tX = Z ti,ja with ti,j = XZJ — }/z

0<i<r;
0<ji<p

Jo

where Y; ; is the maximal index of stored values less than X, ;. Line 5 of Figure 1 provides the
following values: ¢4, = 2 because the value z, may be obtained at this time only from z,; {45 =0
because z3 is available from memory, and ¢, 4 = 1 because z, must be computed from z3. The
goal is to find a reversal table X which provides the minimal time of computation ¢tx. The main
theorem is stated as follows.

THEOREM 1. There exists an optimal reversal table which is of divide-and-conqguer type.

We say that a reversal table (X, ;) is of divide-and-conquer type if there exists an index ¢ such
that
Xip=X1p1==X,,=4¢.

This means that the algorithm computes the value z,, handles the sequence z,,z,41,...,%,, and
next the sequence zg,...,z, ;.

108

> > S
> P
P
R
S
P
R
R
> S
S
P
R
R
P

Ficure 2. The diagram shows a divide-and-conquer optimal reversing of a sequence
of length p = 10 using r = 3 registers. The time of computation is T = 18.

2. Optimal time

The previous result reduces the search for an optimal algorithm to the consideration of algorithms
of divide-and-conquer type.

THEOREM 2. The time of any optimal reversal table of a sequence x,,...,z, with v registers is
given by
r+k
T(p,7)=k 1) —
(1) = h(p+1) (TH),

where k is any integer which satisfies

(T+k_1)—1§p§ (7‘—|—k)_1.
T T

Moreover a reversal table of divide-and-conquer type is optimal if and only if its index q satisfies

(T—I—k_Q)SqS(T—I—k_l), and (T—I_k_l)—lgp—qg(T—l_k_l)—l.
r r r—1 r—1

The first part of the assertion appears in [1]. The proof uses an auxiliary function m, ,; this
function gives the maximal length of a sequence which can be inverted using only r registers and
computing only s times each value z; in the worst case. The proof of the second part relies on the
consideration of

f)=q+T(q=1,r)+T(p-qr—-1).
This function of the real variable ¢ achieves its minimum on the interval given in the theorem and
this minimum is T'(p, r). This gives a functional equation for T'(p, r), which translates exactly the
divide-and-conquer strategy.

It must be noted that for a divide-and-conquer optimal reversal table the number r of registers
is exactly the maximal number of times a term of the sequence is computed. One can observe this
phenomenon in the example of Figure 2, where the terms z1,..., 210 are respectively computed 3,
2,2,2,1,1,2,2, 1,2, 1 times.

109

3. Space-time trade-off

Up to now the number r of available registers was fixed. But it is natural to make the computation
more efficient by choosing r as a function of p. In this context the quantity of interest is the product

rT(p,r).
THEOREM 3. The product (r+ 1)T is greater than a quantity which is equivalent to pln®pln~*4.
There exist arbitrary large p’s and r’s such that the product (r + 1)1 is equivalent to pln® pln~24.

The idea of the proof is to replace the true quantities using the approximations
r+k

r

(r4+ D)T(p,r)~(p+ r(k-1), () ~ (r+ k)RR

This gives an r which minimizes the product (r 4 1)7T". The result is illustrated by Figure 3.

30+
25+
20+
15+

101

0% 5 10 15 20 25 30
P

Ficgure 3. The product rT'(p,r) is close to C, = pln® pln~?4 for p large. Shown
here are the sequences r1'(p,r)/C, for 1 < p <30 and r = 2,...,10.

Bibliography

[1] Abbott (J.) and Galligo (A.). — Reversing a finite sequence. — Preprint, December 1991.

[2] Baur (W.) and Strassen (V.). — The complexity of partial derivatives. Theoretical Computer Science,
n° 22, 1983, pp. 317-320.

[3] Grimm (J.), Pottier (L.), and Rostaing-Schmidt (N.). — A sharp lower bound on the time-space product
for reversing a finite sequence. — Preprint, 1995.

[4] Morgenstern (J.). — How to compute fast a function and all its derivatives, a variation on the theorem

of Baur-Strassen. SIGACT News, n° 16, 1985, pp. 60-62.

110

