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Let ¢ = p™ where p is a prime and m € N*, let f be a monic univariate polynomial of degree
n in F,[X]; this talk surveys known algorithms to find the complete factorization f = f{*--- f¢"
where the f;’s are monic distinct irreducible polynomials and where ¢; € N* for ¢ € {1,...,r}. This
problem plays an important role in various fields like computer algebra, cryptography, number
theory, coding theory, ...

First, we present the main ideas behind Berlekamp’s algorithm (Section 1). Then, we give a
general factoring algorithm composed of three stages (squarefree, distinct-degree and equal-degree
factorization) which provides a framework for several other algorithms (Section 2). Finally, we
outline best known asymptotic complexity, current bottlenecks and recent results (Section 3).

To compare these algorithms, the unit cost will be multiplication in F,. Moreover, the arithmetic
considered is fast for polynomial algorithms and classical for linear algebra.

NoraTioN. Throughout the summary, we let O~ (n) = O(nlog*(n)) where k is a constant.

1. Berlekamp algorithm

Berlekamp’s ideas [1] lead to an efficient algorithm to factorize a polynomial f with no repeated
factors. Let R be the polynomial ring F,[X]/(f) and R; be the polynomial rings F,[X]/(f;) for
i€ {l,...,r}, then

R~R X --+XR,

by the Chinese Remainder Theorem. We concentrate now on the Frobenius map ® on R given by
®:R— R,
h — h?.

The set of fixed points of ® is
B={h€ R,h?! =h}
and again by the Chinese Remainder Theorem, we have
B~ IF‘q’

This means that B is a F, vector space of dimension r, the number of irreducible polynomials f;.
Berlekamp proved the following theorem.

THEOREM 1. Let h € B, then
/=TI ged(f.h = a).

a€l,
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In fact, we obtain a non trivial factorization of f for degh > 1 (if degh = 0, we obtain f
multiplied by 1). Definition 1 outlines an important property of B.

DEeFINITION 1. A set § = {hy,...,h,} is called a separating set for f if for any two distinct
irreducible factors f; and f;, there exists h; € S and a; € F, such that h; — ay is divisible by f;,
but not f;.

Theorem 2 connects Theorem 1 with Definition 1.

THEOREM 2. Let {1,vs,...,v,.} be a polynomial basis of B, then {v,,...,v,} is a separating sel

for f.

These results finally lead to the following algorithm whose complexity is O~ (n® 4+ ¢n?).

(1) Form the matrix of the mapping ® — Id with respect to the basis {1, X,..., X"} of R;
(2) Obtain a basis {1, vs,...,v,} of B = ker(® — Id) using Gaussian elimination;
(3) Factor f computing

f: H ng(f,’UQ—CY)

agl,

and refine the partial factorization successively using wvs,..., v, until the complete factor-
ization of f is obtained.

2. A general factoring algorithm

We focus now on a different approach for factoring polynomials over finite fields. It is a general
method that breaks the problem into three subproblems.

Square-free factorization: Find monic square-free pairwise relatively prime polynomials
Giy---,gn such that

=995 95
Distinct degree factorizalion: Split a square-free polynomial into polynomials the irreducible
factors of which have the same degree.
FEqual degree factorization: Completely factor a polynomial the irreducible polynomial fac-
tors of which have the same degree.

2.1. Square-free factorization. This subproblem is solved easily by more or less computing
the ged of f with its derivative f’. More rigourously, a possible algorithm is the following [3].
i:=1;R:=1;a:= f;b:= f'; ¢c:= ged(a,b); w:= a/c;
while ¢ # 1 do
y:=ged(w,c);z:=w/y; R:i= Rz 1 =i+ 1, w:=y; c:=c/y
R:= R xuw';
return(R)
This method has cost O~ (n).
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2.2. Distinct degree factorization. This subproblem is solved by Theorem 3 [4].

THEOREM 3. For every i« € N, the product of all monic irreducible polynomials over F, whose
degrees divide i is equal to X7 — X .

This theorem leads to the following algorithm which returns a n-tuple (gy,...,¢,) where each
polynomial g; contains all the factors of degree ¢ of f.
(1) Set hg = X and fo = f;
(2) Fori=1,...,n,do
— Compute h; = A!_, mod f;
— Compute g; = ged(h; — X, fi1) and f; = fi_1/9s;
(3) Return (g1,...,9xs).

The main cost of this algorithm is the computation of X¢ for i = 1,...,n. By repeated squaring,
this cost is O~ (n?log¢). A better way of computing this quantity consists in using an algorithm
to iterate the Frobenius map. At first we compute X? mod f and then go doubling evaluating
X% mod fin X to obtain X?"". So X mod f = X% X?) mod f, X% mod f = qu(Xq) mod f,
and so on. The cost of this method is O~ (n? 4+ nlogq)

2.3. Equal degree factorization. The probabilistic algorithm we are going to describe to find
the r irreducible factors fi,..., f, of degree d of a polynomial f of degree n = dr in F, with ¢ odd
is due to Cantor-Zassenhaus [2].

If there exists a polynomial ¢ € F,[X]such that ¢ mod f; = 0and cmod f; #0for1 <i < j <,
then ged(e, f) splits f. To take advantage of this idea, we choose at random a polynomial a of
F,[X]/(f). Then the polynomials ¢; = e mod f; for 1 < ¢ < r are independent and uniformly
distributed elements in F,[X]/(f;). So

iy

a,? =41 mod f;

(3

with probability 1/2 each. Consequently, a“* — 1 does not factor f with probability 2(1/2)".
This idea leads to the following algorithm which returns one factor of f or FAIL.

(1) Choose @ € F,[X]/(f) at random;

(2) Compute g = ged(a, f). If g # 1, then return g;

(3) Compute b = a*=> — 1 mod f;

(4) Compute g = ged(b, f). If g # 1, then return g else return FAIL.

Its cost is O~ (n?log q).

3. Recent results

New results improve the scheme described in Section 2.

— J. von zur Gathen and V. Shoup [7]: Distinct degree factorization: O~ (n? 4+ nlog¢); equal
degree factorization: O~ (n*7 + nlogq).

— E. Kaltofen and V. Shoup announced in [6]: Distinct degree factorization: O(n'®'%logq)
asymptotically but O(n?*® + nlogq) in practice; equal degree factorization: O(n?logn +
nlog ¢) in practice.

Nevertheless, the main cost remains the computation of X¢ for ¢ = 1,...,n. Furthermore, other
recent results must be cited.

logn )0(1)'

— Evdokimov (1993): A deterministic algorithm, quasi polynomial time (n'°" log ¢

— Niederreiter [5]: A new deterministic algorithm.
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— Kaltofen-Lobo (1994): Randomized Berlekamp with Wiedemann’s linear solver, in time

O~ (n? + nlogq).
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