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Abstract

The concept of complex multiplication is defined, after some background is given on
elliptic functions and quadratic forms. Applications to the class number problem, primality
proving and Ramanujan’s formulas for 1/7 are presented.

1. Introduction

This is an introduction to the ideas of complex multiplication of lattices and elliptic curves. The
theory plays an important role in class field theory, and has had recent applications in algorithmic
number theory, especially in elliptic curve primality proving. This presentation is a first glimpse of
a very rich and deep theory developed by Kronecker, Weber, Hilbert, Shimura, Deligne, etc [3]. A
good introduction to the ideas presented here is [6].

First, some background material on elliptic functions and quadratic numbers is given. This
background then allows us to define complex multiplication. Some theorems that demonstrate how
these three areas are interconnected and some applications in primality proving, the class number
problem and Ramanujan’s 1/7 formulas are presented.

2. Elliptic Functions

A lattice is an additive subgroup L of C generated by two complex numbers w; and w, which are
linearly independent over R. We write L = [wy,ws]. An elliptic function for L is a function f(z)
meromorphic on C that is doubly periodic: f(z 4 w;) = f(z) for i = 1, 2.

One of the most important elliptic functions is the Weierstrass p-function, defined for a lattice

L as
1 1 1
W=zt X (e o)
Let G, k > 2, be the FEisenstein series for L:
1
weEL w#0 w
Then expanding p(z) and @'(z) near the origin, we get
p(z) = 1/2’2 + 322Gy + 52 G + -+ -,
O (2) = =2/2° + 62G4 + 202°Gg + - - - .
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Define g, = 60G, and g3 = 140Gs. Then p satisfies the differential equation

0'(2)" = 4p(2)° — g20(2) — gs.

In addition, p and g’ are generators for the field of elliptic functions over L. Omne of the main
theorems of complex multiplication states when we can write p(az) as a rational function in p(z).

In order to easily detect the difference between lattices that are complex multiples of each other
and lattices that are truly different, we introduce the concept of j-invariant of a lattice.

For a lattice L = [wy,ws], define 7 = wy/wy. Then let A(7) = g3(7) — 27g5(7). The j-invariant
of L is the complex number

J(r) = 1728g5(7)/ A(7).
It turns out that two lattices are isomorphic if and only if they have the same j-invariant.

The j-invariant can also be used to classify elliptic curves [8]. Consider the elliptic curve F,
which is an equation of the form y? = 423 — g2 — ¢g5. From the theory of elliptic curves, we know
there is a unique lattice Lg such that g, = ¢2(Lg) and g3 = ¢g3(Lg). (The inverse is also true - given
a lattice L over C, there is a unique corresponding elliptic curve F). We extend the definition of
J to elliptic curves by saying that j(£) = j(Lg). Then two elliptic curves F;, E5 are isomorphic if
and only if j(E,) = j(E2).

3. Quadratic Forms

One application of complex multiplication is in solving the class number problem, which is a
problem related to quadratic forms. Some background on quadratic forms is needed in order to
state this problem. A quadratic form is a function f(z,y) = az? + bay+ cy* with a,b, ¢ € Z, and its
discriminant is —D = b? — 4ac. For future reference, define the discriminant of a quadratic number
7 to be the discriminant of the unique quadratic form (a,b,¢),a > 0, (a,b,c) = 1 such that 7 is the
root of az? + bx 4+ ¢ = 0.

Define Q(—D) to be the set of all quadratic forms with discriminant —D and (a,b,c) = 1.

Associate with f a matrix A = (;2 bf). Then two quadratic forms f, f are equivalent if there is

a matrix M € SLy(Z) such that A’ = M~'AM.

Define H(—D) = Q(—D)/ ~, where ~ is the equivalence relation defined above. Then an
important theorem states that h(—D) = |H(—D)| is finite. Each class contains exactly one form
which is reduced (]b] < a < ¢,and b > 0 if [b| = a or a = ¢), and we identify each class with this
form: H(-D) = {Q1,Q2,...,Qn}. Then, there is a (fairly complicated) way of composing two
forms, and this operation makes H(—D) into an abelian group. H(—D) is called the class group,
and h(—D) is the class number. The problem is to find all —D for which h(—D) is fixed, especially
for h(—D) = 1. See [T7].

4. Complex Multiplication

For two lattices L and M, we say that L ~ M if and only if da € C such that aL = M. Define
S(L)y={a€C,al C L}.

Finally, we can give our definition of complex multiplication.

DEerINITION 1. If S(L) contains more than Z, L is said to have complex multiplication. If a is
in S(L) — Z, L has complex multiplication by a.

S(L) has some special properties.

THEOREM 1. Let L = [wy,ws]. Then a € S(L),a € C—Z if and only if o is a quadratic integer.
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Writing 7 = wy/wi, then @ = ar + b, 7 ¢ R, so Q(a) = Q(7) = Q(v/=D), where —D is the
discriminant of the quadratic number 7. Denote this field by K.

Quadratic field theory tells us that the ring of integers of K is O = Z[(—=D + +/—D)/2]. Then
S(L) is a subring of Og. Thus, if L has complex multiplication by a single element «, then it has
complex multiplication by each member of a ring of elements in an imaginary quadratic field. Note
that the non-integer elements of S(L) are genuinely complex, which explains the name complex
multiplication.

ExaMPLE. Let @ = (a,b,c) € H(—D), and set 79 = (=b + vV—D)/(2a). Then the lattice
Lg = [1, 7¢] has complex multiplication by all of O = Z[(-D + v—D)/2].

One remarkable fact is the relationship between lattices with complex multiplication and the p
function.

THEOREM 2. Letl L be a lattice, and p be the p-function for L. Then L has complex mulliplication
by a € C—Z if and only if

plaz) = Fp(2))/G(p(2))
with F, G relatively prime polynomials, and deg(F') = deg(G)+ 1 = N(a).

Algorithms exist to find F' and G [6].
Complex multiplication can also be defined on elliptic curves, in the obvious way.

DEFINITION 2. An elliptic curve E has complex multiplication if and only if the associated lattice
L has.

The following theorem shows which F have complex multiplication, and by what ring.

THEOREM 3. All elliptic curves Eg = C/Lq, where L is defined as in the example, have complex
multiplication by the full ring of integers . These are the only ones with complex multiplication
by O, up to isomorphism.

The following theorem relates complex multiplication with the j-invariant.

THEOREM 4. Let E be an elliptic curve with complex multiplication, L its associated lattice, and
D the associated discriminant. Then j(F) is an algebraic integer of degree h(—D).

THEOREM 5. The minimal polynomial of j(7q), known as the class equation, is
HpX)= [ (X-j(r)
QeH(-D)

If K is an imaginary quadratic field, then Ky = K(j(1g)) is Galois and is called the Hilbert class
field of K.

5. Applications

5.1. ECPP. Elliptic Curve Primality Proving makes use of the class equation to find large
prime numbers. Part of the method is to determine if, for a prime p, (p) splits completely in Ky,
or equivalently, H_p(X) has h roots modp. Thus one of the problems is to actually compute the
class equation. One algorithm to do this involves the theory of complex multiplication [2].
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5.2. Class Number Problem. We would like to be able to calculate the number of — D’s that
have class number h, as well as determine what those —D’s are. Work done from 1934 onwards has
solved the problem for A = 1,2,3,4 and 5 < h < 23 for h odd [7, 1].

One method is to consider the minimal polynomial of j(7) which has degree h = h(—D). If
we can find the minimal polynomial, then its degree will tell us the class number A for the —D
associated with 7. The following theorem supplies one approach to the problem.

THEOREM 6. Let v5(2) = v/j(2) sending iR to R. If 3 fD then Q(v2(7)) = Q(j(7)).

Thus, finding the degree of the minimal polynomial of v, will give the degree of j(z), and hence
h(—D). This is an easier task than working with j(z) directly. Various other rather complicated
functions (Weber functions [9]) are used in the development of this problem. In particular, the
Weber functions allow us to find all imaginary quadratic fields of class number 1.

THEOREM 7. h(—=D) =1 if and only if d = 3,4,7,8,11,19,43,67,163.

5.3. Ramanujan. Recalling the Eisenstein series, define £y by G, = 2((k)F}, and then define

2= <E2(T) B 7[_%3(7_)) gzgg

Then Ramanujan proved
THEOREM 8. IfT € K, then s, € Ky.

When combined with an identity from Fricke and Clausen involving s, D and j(7), some very
complicated identities involving 7 are produced, including the following when D = 163:

i( N 0 L D (640320)%/° 1
Cc n = —
AT (30 n!? 6403209~ 163-8-27-11-19- 1277

where ¢; = 13591409/(163-2-9-7-11-19-127). This series gives a very fast-converging approximation
for 1/m. Other values of D produce similar formulas. See [4] and [5] for more details.
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