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Abstract

A Riordan array is a doubly indexed sequence of coefficients of a bivariate generating
function. This talk presents some of their properties, then shows how they can be useful in
combinatorial problems.

1. Riordan arrays

The term Riordan array was introduced recently to denote a concept familiar in combinatorics;
it is a doubly indexed sequence {d, y;n,k € N}, defined for two formal series d(¢) and k() by

1) dos = PO, or Zdt:%

We use the notation (d,h) := {d, ;}. A Riordan array is proper when d,, , # 0 for all n, i.e. when
h(0) # 0.

ProPERTY 1. The d, j satisfy a recurrence relation
(2) pti1 k41 = aodp jp + ar1dy g1 + -+ -

The a;’s define a series A(z) = Y, a;2" and the series h satisfies the equation A(t) = A(th(t)).

If the recurrence relation (2) holds for some sequence d,, i, then this sequence is a proper Riordan
array, with d(¢) the generating function of the sequence {d,o}: d(t) = Y, d, ol", and h(¢) the
(unique) solution of the equation Y = A(tY).

THEOREM 1. Letl f(z) =3, fi2"; then
Zdn efe = ["I{d(0) F(2R(1))}-
ExaMPLE. The binomial numbers (}) are defined by d(t) = h(t) = 1/(1 —1):

()~ ) -t}

The generating function of the associated sequence {a;} is simply A(¢) = 1+ ¢, and the so-called
Euler transform is derived from Theorem 1:

3 (1) r=m e ()}
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2. Combinatorial sums

THEOREM 2. The Fuler transform generalizes as

n+ ak . tm th-a
zk:(erbk)fk:[t ]{(1—t)m+1f((1—t)b)} (6> a),
=[O+ (A0 )} (b<0).

Theorem 2 applies to sums involving the Catalan numbers C} = (Zkk)/(k + 1); for example

3 ()= (n20)

It does not apply directly to Stirling numbers of the first and second kind [}] and {7} }; however
the simple identities

1

Z;[k]t =log" —; X {k}t = (' = 1)

n!
allow us to use a modified form of it. For example, Theorem 2 after some algebra gives

Z{m} [k:—l— 1] (=1)f=rtt 1 [m41 B
k P E+1 m+1 P m-ptly

k

where B,, is a Bernoulli number.

3. Inversion formulse

The product of two Riordan arrays D = (d(t),h(t)) = {d, x} and F' = (f(t),9(t)) = {far} is the
double sequence {g, ; = > dnjfin}-

PropPERTY 2. The product of two Riordan arrays is a Riordan array:
D F = (d(t) f(th(1)), ()9 (th(1)))-
The identity element is [ = (1,1).
PROPERTY 3. A proper Riordan array D = (d(t),h(t)) has an inverse d=* = {d, 1} = (d(t), h(t)).

As a consequence, we obtain an inversion formula for sums:

k k

Such formule date back a long time; see for example Riordan’s book [9]. The inversion formulae
in this book were recently revisited by Sprugnoli [11], who proved them again using the theory of
Riordan arrays; see also [10].
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4. Coloured walks

We consider three types of steps on a square lattice: North (N), East (E) and North-East (NE).
An underdiagonal walk is entirely below or on the main diagonal z = y. A weakly underdiagonal
walk is a walk such that its final point is on or below the diagonal. Let p, ; and ¢, ; be respectively
the number of underdiagonal walks and the number of weakly underdiagonal walks, with n steps
and ending at a distance k from the diagonal; the distance k can be either along the z-axis or along
the y-axis.

If there is only one kind of step of each type, then we have a Motzkin walk, corresponding to
Motzkin words. A generalization allows for different kinds of horizontal (E), vertical (N) or diagonal
(NE) steps [7]. Let @, b and ¢ be the number of different steps in the East, North-East and North
directions; then we have the following result.

THEOREM 3. The {p, s} and {q, } are Riordan arrays such that the associated A function is
A(t) = a+ bt + ct?, and, with A =1 — 2bt + (b* — 4ac)t?,

1-bt—vVA 1-bt—VA
{Pn,k}:( )

2act? ’ 2ct?

(1 1-bt-VA
{Qn,k} = \/Z’ L )

Symmetric walks. When there is the same number of colours for East and North steps (a = ¢),
then it is possible to derive some interesting identities. For example, let {f;} be the periodic
sequence {1,0,—-1,0,1,0,—1,...}; then ", p, x fr = b". The algebraic proof of this equality is easy;
there also exists a combinatorial interpretation: There is a bijection between the underdiagonal
walks ending at distance k£, whose last non-NE step is N, and the walks ending at a distance k 4 2
whose last non-NE step is E.

9

5. Asymptotics for convolution matrices

The reference for this section is [8]. Let F' be an analytic function s.t. F(0) = 1, and define
F,(z)=[2"{F(z)"}. This is a polynomial function of degree n, satisfying a convolution property:

Fao+y) = iFn_k(x)Fk(y).

The f,r = [¢F]{n!F,(2)} = [zF2"{n!F(2)"} define an infinite convolution matriz [1, 6]. Let

dn,k = %fn,lﬂ then
=Y (1) (&) (5)
mk Eylkolks! - \ 1! 2! 31)

which shows that {d, ;} is a Riordan array: {d,;} = (1,(InF(2))/2). In other terms, f,, =

(n/ kD[] {(In F(2))").

For a fized ratio p = n/k, we have an asymptotic equivalent of d, j, or equivalently of f, j:

Define m = n — k and
In F(z) (=) In F(z) =
¢,(2) = — =\7= )
then d, , = [2"]{®,(2)™}. As long as p is fixed, we can define C(u) = >, [z"[{®,(2)"}u™. A

form of the function C'(u) can be computed as follows. There exists a unique analytical function
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w(z) s.t. w(0) = 0 and w(z) = 2®,(w(2)). Define a function G' by G'(u) = 1/®,(u); then, by the
Lagrange Inversion Formula,

UG ()} = [0 {6 @)@y} = ] (@, (w) )
Applying this formula backwards to [2™]{®,(2)™} gives

uw' (u) 1

g = WM HC()} - with - Clu) = =7 = ey

When the function @, is well-behaved, an asymptotic equivalent of d,, ; can be obtained by singu-
larity analysis. For example, assume that the radius of convergence of w(z) is finite, and that w
has a single singularity r on its circle of convergence, defined as the solution of smallest modulus of
the equation z@é(w(z)) = 1. Let s = w(r); as s = r®,(s), we get that s®;(s) = ®,(s). This leads
finally to the asymptotic formula

® (s ® (s)™ (2
(3) do i ~ p(*) P(m) ( m)
J20,(s)®u(s) 4 m
If desired, this equivalent can be expanded into an asymptotic expansion to any order.

ExaMPLE. Asymptotic estimates for Stirling numbers of the second kind have been obtained
by several authors (see for example [12] for a survey of results and for uniform expansions); some
estimates can also be derived from (3): For f,; = {}%}, we have d,; = (k!/n)){}} and ®,(z) =
h(2)=1) with h(z) = (¢* — 1)/2z. The equation defining s simplifies into e* = p/(p — s). Then
®,(s)=1/(p—s)t/m™, q);(s) = ®,(s)/s and q);(s) =®,(s)(p(s—p+1))/(s*(p—1)). The asymptotic
equivalent (3) gives after some computation

n nt | ®,(s) [2n—2k\ [P, (s)\"
{k}N EY\ 2s2@ (s)\ n—k ( 4s )
n! k(n — k) 2n — 2k k*
TE\ 2n(ks —n+ k)\ n—Fk ) (4s)"—F(n — sk)F’

Numerical results for Stirling numbers of the second kind are then presented for given n and k,
and hence p; the conditions of application of the formula (3) are not satisfied (the formula holds
for constant p and n — +00) but the approximations computed are very close to the actual values,
which suggests that the range of application of (3) is much wider than indicated, and that some
kind of uniformity result should hold.

Indeed, for a fixed ratio p = n/k, the asymptotic expansion given by (3) can also be obtained by
a saddle-point approximation. We give here the computation for the first term of the expansion;
the full asymptotic expansion can probably be obtained in a similar way. For n — k = m — 400,

we have to compute [27']®7*(z). The saddle-point pg is defined by the equation zq);(z)/q)p(z) =1;
the uniqueness of the solution on ]0, +oo[ shows that p; = s. Then

@ EHE A i ot (%Z(S)_ & “”E&)-

16




As q);(s)/q)lp(s) = 1/s here, 0% is simply 52<I>;(5)/<I>p(3). Injecting this into Equation (4), and with
®,(s) = s®,(s), we get

I

o (s)mtt
)}~ = :
\/27rm<1>p(s)<1>; (s)

which is exactly (3) if we use Stirling’s approximation for the factorial: (*")4=™ ~ 1/y/Tm.

Thus, the approach presented in this talk can be seen as an alternative to the saddle-point
approach; instead of solving the equation sq);(s) = &,(s), it leads to solving the equation w(r) =
r®,(w(r)), which may be simpler in some cases.

To show how we can obtain asymptotic expansions for a large range of n and k, we write

m m m . IOgF z
[2m{@r ()} = [2"] {f(2)'}  with  f(z)= %
Now f*(z) = ®,(z)™ and the saddle-point approximation gives

m1f rk f(Pl)k
(5) [Z"{f"(2)} ~ W7

for p; the (unique) real positive solution of the equation zf'(2)/f(z) = m/k and

o = pi((J/ Dpn) = (21 1)) + (] (p1) paf (p)-
Now f'/f = (m/k:)(q);/q)p) and the saddle-point is still p; = s; also 0? = (m/k)pf(q);/q)p)(pl);
hence the equation (5) is simply another way of writing (3) or (4). However, in this last form, it
is easy to understand why the approximation (3) holds for n/k no longer fixed: The equivalent
approximation (5) has been proved for m = (k) [2, 5] or for m = o(k) [3, 4]. This indicates that
the asymptotic expansion (3) is valid without restriction on p = n/k, as long as n = k+ O(k), and
m=n—k — 4+o0.

[z"{ @7 (=

Bibliography

[1] Carlitz (L.). — A special class of triangular arrays. Collectanea Mathematica, vol. 27, 1976, pp. 23-58.
[2] Daniels (H. E.). — Saddlepoint approximations in statistics. Annals of Mathematical Statistics, vol. 25,
1954, pp. 631-650.

[3] Drmota (M.). — A bivariate asymptotic expansion of coefficients of powers of generating functions.
European Journal of Combinatorics, vol. 15, 1994, pp. 139-152.
[4] Gardy (D.). — Some results on the asymptotic behaviour of coefficients of large powers of functions.

Discrete Mathematics, 1995.

[5] Good (I.J.). - Saddle-point methods for the multinomial distribution. Annals of Mathematical Statistics,
vol. 28, 1957, pp. 861-881.

[6] Knuth (D. E.). — Convolution polynomials. The Mathematica Journal, vol. 2, 1992, pp. 67-78.

[7] Merlini (D.), Sprugnoli (R.), and Verri (M. C.). — Algebraic and combinatorial properties of simple,
coloured walks. In CAAP, Lecture Notes in Computer Science, vol. 787, pp. 218-233. — 1994.

[8] Merlini (D.), Sprugnoli (R.), and Verri (M. C.). — Asymptotics for two-dimensional arrays: convolution
matrices. — June 1994.

[9] Riordan (J.). — Combinatorial identities. — Wiley, New York, 1968.
[10] Sprugnoli (R.). — Riordan arrays and combinatorial sums. Discrete Mathematics, 1994.
[11] Sprugnoli (R.). — A unitary approach to combinatorial inversions. — June 1994.
[12] Temme (N. M.). — Asymptotic estimates of Stirling numbers. Studies in Applied Mathematics,

vol. LXXXIX, n° 3, 1993, pp. 233-244.

17



