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1. Introduction

This talk is based on a joint paper with Te Sun Han [1]. It presents an “interval algorithm” that
solves the problem of generating a random number X with distribution q = (¢4, ¢2,...,qn) (i.e.
Pr[X = k] = &, 1 < k < N) from independent identically distributed tosses with an M-coin of
distribution p = (p1, pa,. .., pa). This problem was set by Roche [2] (variants of this problem were
studied by von Neumann, Elias, Knuth and Yao). The efficiency of the algorithm is measured by
L*, which is the expected number of tosses required to generate X. Roche proved that the optimal
algorithm should satisfy:

H(p) =~ =  H(p)
where H is the entropy function (see Appendix) and

Hq) _ . H(d)+ f(p)

f(p) = In(e/pmin), where  puin =  oin p;-

The upper bound is satisfied by a probabilistic algorithm.

Han and Hoshi propose an “interval algorithm” that satisfies the upper bound with

h(pmax)
ma where Pmax = 12?1(\4 Pis

f(p) = [2(M - 1)] +

with h(p) = —plnp — (1 — p)In(1 — p). No choice of function f seems to be essentially better than
any other one. The assumed superiority of the interval algorithm is that it is deterministic and
easy to implement.

2. Interval algorithm

Let p be the original distribution. Let us fix a partition of [0, 1) according to p, that is a sequence
ay=0< o) < - <ay =1,

such that a; — a;_; = p; for all j. Now any interval [a,b) may be partitioned into the subintervals
1([a,0)), 1 < j < M, with

1i([a,0)) = [a + (b = a)aj 1, a + (b — a)ay).
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Ficure 1. Example of sequence (K,) (p = (1/2,1/2),q =(1/3,1/3,1/3)).
Let q be the distribution we want to generate. Fix a partition
Po=0<p < <PBy=1

of [0,1) according to q (Br — Bk—1 = qx), and set Jr = [Be_1, Br).
The interval algorithm is defined as follows:
(1) set n =0 and K, =[0,1);
(2) if K,, C J; for some k, then stop the algorithm and set X = k;

(3) else flip the M-coin (with probability distribution p). The result is a number M, €
{1,....,M}. Set K, 1 = Iy, (K,)and go to (2).

This procedure is illustrated in Figure 1.

With probability one this algorithm terminates in finite time, and generates a random number
X, which is a deterministic function of Y = K. Let Y be the set of all possible values of Y. By
construction, Y is a partition of [0,1), and any y € Y may be obtained with probability |y| (where
|y| denotes the length of interval y). In consequence, we fall in J, with probability |J;| = gx, which
means that X has distribution q as expected.

Now denote by L the number of tosses necessary to get X. From basic results on entropy in tree
algorithms, we get that

=) = 1Y)
H(p)

Moreover, since X is a (deterministic) function of Y, then H(Y) > H(X)= H(q), which yields

. H(q)
I zm.

3. Upper bound

In order to get an upper bound on H(Y) (and then on L*), the authors introduce a new variable

W, such that

(1) W is a function of Y;
(2) W has 2(M — 1) possible values;
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(3) conditionally on (W, X) being equal to some (w, k), we have
Y > Geom(ppax),
where Geom(p) denotes the geometric distribution of parameter p:
PrGeom(p) = ] = (1 - p)p'
Then we will get that: H(Y)=H(Y,W,X)= H(X)+ HWI|X)+ H(Y|(W, X)), with

H(X) = H(a), HOVIX) < 200 - D], H|W,X0)) < H(Geom(pee)) = 22,
which yields the announced bound.

In order to define W, set X = k and consider the possible values of Y, that is all the intervals
y € Y such that y C J;. We may organize them as follows. There is a unique sequence of tosses
(M,,) such that, for all n, K, = [y,6) with v < Br_; and § > F;_; (resp. with. v < §; and § > §):
this is the upward sequence (resp. the downward sequence) associated to Ji; it is finite only if
¥ = Br_1 (resp. if § = ;) for some K,. Now any possible value of Y corresponds to a unique,
finite sequence of tosses (M, (¥))o<n<n(y), and we can check that

is valid for (M,,) equal to either the upward sequence or the downward sequence.

For a given y, set sign(y) = upward (resp. sign(y) = downward) if y derives from an upward
sequence (resp. a downward sequence), and M(y) = M,,)(y) (the value of the last toss that stops
the algorithm at y). One can check that if sign(y) = upward (resp. if sign(y) = downward),
then M (y) cannot be equal to 1 (resp. M(y) cannot be equal to M); in consequence, there are
only 2(M — 1) possible values for (sign(y), M(y)). We may now define the new random variable
W = (sign(Y'), M(Y)) which obviously satisfies properties (1) and (2). Moreover,if X = kand W =
(s,m), then all the possible values of Y derive from the same upward or downward sequence (M,,),
and they may be ordered in a sequence (y;) such that n(y;) is strictly increasing. In consequence,
the interval algorithm yields y; with probability

n(yi)—1
piy)={ I pa. | Pws
n=0

which implies that p(y;) < pmaxP(yi—1): property (3) may be deduced from this inequality.

4. Conclusion

The interval algorithm may be adapted to generate the first n terms of a finite state space Markov
chain; the average cost L*/n is then asymptotically optimal. Independent identically distributed
tosses with an M-coin may also be replaced by a Markov chain.

Appendix: basic properties of the entropy function
The entropy of a distribution a = (a;);c; (where I is countable) is defined by:
H(a)= - Zailnai.
iel
The notation H(A) is also used if A is a random variable with distribution a. If Card(/) = P, then
H(A)=H(a)<InP.
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Since a pair of random variables (A, B) is a random variable, one may also consider the entropy
H(A,B). If B = f(A) (where f is deterministic), then H(A) > H(B) (notice that it implies
H(A,B)= H(A)).

In the general case, denote by A/B = b the distribution of A conditioned on B = b (it is assumed
that Pr(B =b) > 0). Set f(b) = H(A/B =b). Then one may define

H(A|B) = E[f(B)],

which satisfies: H(A|B) = H(A,B) — H(B).
Now, consider two distributions a = (@;);>1 and b = (b;);»1 ordered in decreasing probabilities
(a; > a;p1 and b; > by, for all 7). The partial ordering a > b is defined by:

J J
da>> by, Vi1
i=1 i=1
If a > b, then H(a) < H(b) (this is indeed valid for all the concave, symmetric functions).
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