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Abstract

D. Zeilberger has shown how many combinatorial identities involving special functions
can be proved using the theory of holonomic sequences and functions. This work presents a
general algorithmic approach to the multivariate case, together with an implementation.

Introduction

Speaking informally, D. Zeilberger has defined holonomic functions in [10] as those functions
of one or several variables satisfying sufficiently many linear equations (differential equations or
recurrence relations) with polynomial coefficients so that they are completely determined by a finite
number of initial conditions and a finite number of polynomial coefficients. The study of these
functions is motivated by their pervasiveness in combinatorics and special functions theory. The
class of holonomic functions enjoys closure properties that make it possible to construct equations
satisfied by a particular function from equations satisfied by simpler functions. These operators
can be exploited by many algorithms. In particular, series expansions of holonomic function can be
computed efficiently and asymptotic estimates related to them can be derived from the operators.
A very important special class of holonomic functions is formed by algebraic functions, for which
finding a differential operator is the best known algorithm to compute series expansions of large
order.

For the single variable case, the gfun package [6] provides functions that construct recurrence or
differential operators satisfied by holonomic sequences or functions and thus prove formulae. For
instance, Cassini’s identity on the Fibonacci numbers

Fn+2Fn - Fr?-[-l = (_1)717

is proved by computing a linear recurrence satisfied by the left-hand side, starting from the linear
recurrence satisfied by the Fibonacci numbers. Here is the kind of proof for which gfun provides
tools:

ho = FupaFy — By, = F2 4 By gy - F2,

Py :Fs+1+Fn+1Fn+2_F3+2:F3+1_Fn+1Fn_F5 = —h,.

It is then sufficient to check that (—1)" also satisfies this recurrence and that a finite number of
initial conditions match.
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Ore operator o(z) 6(z)  Action

differentiation x I flz)~— f'(z)
shift t+1 0  f(z)— f(z+1)
difference c+1 1 f(z)— flz4+1)— f(z)
g-dilation qz 0 f(z)+ flqz)
g-differentiation qz 1 flz)—[flgz)— f(2)]/[(qg— 1)z]
Mahlerian operator — a” 0 f(z)w— f(zP)

TaBLE 1. Examples of Ore operators

In one variable, the algorithms for differential equations and recurrence equations are always
very similar and can be profitably expressed using the vocabulary of Ore operators [5]. These are
defined over a field K(z) by a commutation rule

(1) dx =o(z)0+ 6(z),

where o is a ring endomorphism of K(z) and 6 is a vector-space endomorphism of K(z). Table 1
gives a list of important examples.

In several variables, a holonomic function is defined by several operators and most of the closure
properties still hold. In addition, holonomy is often preserved by specialization; by definite and in-
definite summation (for recurrences) or integration (for differential equations). However, making the
corresponding construction of operators explicit is more difficult. Wilf and Zeilberger [9] have given
efficient algorithms for some of these operations in the hypergeometric and the g-hypergeometric
case (linear recurrences or g-recurrences of order 1 on a sequence or on the coefficients of a series).
N. Takayama [7, 8] has used Grébner bases of differential, difference and g-difference operators to
make an explicit construction of operators in the general (non-hypergeometric) case. This is (at
least partly) implemented in his programs Kan and Macaulay for D-modules.

The aim of this work is to attack multivariate holonomy via Ore operators and non-commutative
elimination by Grébner bases or a skew version of the Euclidean algorithm [1, 2]. This is imple-
mented in F. Chyzak’s Mgfun package' written in Maple.

1. Elimination and ideals

Ore algebras in the univariate case are algebras K (z,d) where K is a ring and z and 0 are related
by (1). The multivariate case is obtained as the tensor product K(z;,0,) ® - -- @ K(z,,0,).

The example of Legendre polynomials illustrates a simple use of elimination. Legendre polyno-
mials satisfy the following three dependent relations:

(2) (1- a*)P/(2) = 20Pl(2) + n(n+ 1) Po(x) = 0,
3) (14 2)Paga(z) — (204 3)2 Pasa(x) + (n + 1) Po(2) = 0,
(4) (1= )Pl 1(2) + (0 + 1) Pga(2) - (n + 1)Pa(z) = 0.

Any of these relations can be deduced from the other ones. Here is how Mgfun can be used to
prove (3) from (2) and (4). The computation consists in defining a suitable Ore algebra, a proper
term ordering on the variables, and then computing a Grébner basis with respect to this order.

! Available by anonymous ftp on £tp.inria.fr:INRIA/Projects/algo/programs/Mgfun or at the URL
http://www-rocq.inria.fr/Combinatorics-Library/www/programs/Mgfun.
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A:=orealg([x,diff,Dx], [n,shift,Sn]): T:=termorder(A,plex=[Dx,Sn],max):
DE:=(1-x"2)*Dx"2-2*x*Dx+n*(n+1) : RDE:=(1-x"2)*Dx*Sn+(n+1) *x*Sn-(n+1) :
map(collect,gbasis([DE,RDE],T,ratpoly(rational, [n,x])),Sn,factor);

(-n—=1)S,+an— D, +2’D,+z, (-n-2)52+z(2n+3)S, —n—1]

The operator (3) appears at the end of the basis. The same result can be obtained by a skew
Euclidean algorithm applied to (2) and (4). This is done in Mgfun as follows:

RE:=skewelim(DE,RDE,Dx,A,ratpoly(rational, [n,x])):

Since we are interested in functions or sequences annihilated by operators, it is natural to con-
sider the left ideal generated by these operators. In one variable, the ring K(z)(d) is Euclidean
(therefore principal) [5]. Thus one can work with solutions of univariate Ore operators as one works
with algebraic numbers, using Euclid’s algorithm to compute normal forms in a finite dimensional
vector space generated by 1,0,9% ..., P where P is an operator analogous to the minimal poly-
nomial. These normal forms in turn are used to compute operators annihilating sums or products
of holonomic functions by performing computations in the proper finite dimensional vector space
and determining a linear relation by Gaussian elimination. In several variables, skew polynomial
rings are Noetherian [3] so that a normal form is provided by Grébner bases. The same kind of
algorithms as in the univariate case apply. Elimination between operators consists in finding an
element of the ideal they generate which does not contain the undesirable variable. A recursive
extended ged algorithm can be used to eliminate a 0 variable between two operators. The general
case of elimination is obtained by Grébner bases with appropriate orders.

2. Creative telescoping

Holonomic ideals form an important class of ideals of operators. In these ideals, it is possible
to eliminate any of the variables. This elimination is applied by creative telescoping [11] to the
computation of definite integrals or sums. The idea is that if f is annihilated by a holonomic ideal
of K(z,d) and if the 9* f’s (k > 0) vanish at the border 9 of a suitable domain €, then an operator
annihilating 95" f (the definite sum or integral) is obtained by first eliminating z. This yields an
operator which can be rewritten 9A(9) + B such that

[0 A(D)](f) + B(f) = 0.

Then applying 95" (i.e., summing or integrating over the domain) gives A(9)(f)|,q+ 05" B(f) = 0,
where the hypotheses ensures that the first part (the sum or integral at the boundary) is zero.
Since B does not contain z it commutes with d~! and is the desired operator.

As an example, we compute a system of differential equations satisfied by the generating function

of the Legendre polynomials
Flz,z) = Z P,(z)z"

n>0
starting from (2) and (3). The steps to be performed are: (i) creation of the Ore algebra A =
Q(n,S,) @ Q(z,0,;) ® Q(z,0,); (ii) determination of operators annihilating P,(z)z" in A; (iii)
elimination of n; (iv) left division by 5, — 1. Here is the corresponding Mgfun session:
Legendre:=[RE,DE,Dz]: z_to_the_n:=[Dx,z*Dz-n,Sn-z]:
A:=orealg([x,diff,Dx], [n,shift,Sn],[z,diff,Dz]):
T1:=termorder(A,tdeg=[Dx,Sn,Dz] ,max):
Legendre_times_zn:=hprod(Legendre,z_to_the_n,2,Tl) ;

Legendre_times_zn := [Di - x2D§ —2zD,+n? +n, nSZ +25n%+2%n+4 22 —2zanS, — 3za8,,zD, —n]
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T2:=termorder (A,lexdeg=[[n], [Dx,Sn,Dz]] ,max):
gb:=gbasis(Legendre_times_zn,T2,ratpoly(rational, [x,n,z]));

gb:=[D? —2’D? — 22D, + 2°D? + 22D,z — 28, + S’D, — 2225,D, + 2°D., 2D, — n]
map(collect,subs(Sn=1, [gb[1],gb[2]]), [Dx,Dz]);
[(1- xz)Di — 22D, + 22D, + 22Df, (1-2zz + 22)Dz + 2z —z]

This is a system of differential equations satisfied by the generating function of the Legendre
polynomials. The whole computation is performed in 2.1 s. on a Dec Alpha. The system can be
further simplified by another elimination to yield an operator of second order in D, only. From the
above system a symbolic solver of differential equations can be used to find the well-known formula

1
D E) L —
"0 V1—-2zz+ 2

Conclusion

This approach is susceptible to numerous applications, extensions and improvements. Applica-
tions to g-computations look promising; Comtet’s algorithm [4] to compute the differential equation
satisfied by an algebraic function can be generalized to some extent; a program handling operators
and initial conditions simultaneously could benefit from the initial conditions to avoid letting the
orders of the operators grow too much and thus could turn into an efficient formule prover; compu-
tation of Grobner bases could be speeded up using a non-commutative analogue of trace lifting or
simple generalizations of the FGLM algorithm, etc. Hopefully, all of this will appear in F. Chyzak’s
thesis.
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