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Abstract

A general technique is presented to easily compute the order of the average complexity
of a tree rewriting system from its matrix representation. It can be used for example to
prove that the average cost of the k-th differentiation is of order n!+#/2.

1. Introduction

We aim at studying the order of the average complexity of regular tree rewriting systems. We deal
with simple families of trees 7, in the sense of Meir and Moon [4]. The corresponding generating
function (GF) is defined by T(2) = 2¢(1'(z)) where ¢(y) is a polynomial whose n-th coeflicient
is the number of constructors of arity n. For example, the GF of binary trees is defined by

T(z)=2(14T*z)) = 2¢(T(2)) with ¢(y) = 1 + y*

Asymptotics of T(z). We define 7 > 0 as the solution of 7¢/(7) — ¢(7) = 0 and we denote
p=T1/¢(t) =1/¢'(T). Then p is the dominant singularity of 7'(z) with the Puiseux expansion

o= (ER 0 e 0

P n>2

From singularity analysis, we deduce the estimate of the n-th coefficient of 7'(2)
A7) n-a ( ( ))
"T(2) = np 321

An example: differentiation of trees. A typical example of a tree rewriting system is formal
differentiation. We describe the action of the differentiation and copy operators on trees constructed
with a binary constructor * and a variable a

d(a) — a cp(a) — a
d(u*v) — d(u) * cp(v) + d(v) * cp(u) cp(u*v) — cp(u) * cp(v)

If B(z) denotes the GF of binary trees, this translates in terms of cost generating functions in
the form

Ca(2)
Cep(2)

B(z) +22B(2)Ca(2) + 22B(2)Cep(2),
B(z) +22B(2)Cep(2).
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Equivalently, we have the matrix representation

(1) Ca(z)\ _ (22B(z) 2zB(2)\ (cCa(2) + B(z)
Cep(2)) 0 22B(z)) \Cep(2) B(z))"

The solution is

B BEOLB() B+ B()
Cl&) = T80 = G- BGREAT B ) T 0B+ B

Since B(z) = z¢(B(z)) with ¢(w) = 1 4+ w?, 7 and p are easily determined: 7 =1, p = 1/2.

Average complexily. The cost GF C.,(z) writes as F(B(z)), where F(w) is a rational function.
The dominant pole of F(w)is w = 7 and it is simple. An application of transfer lemma of singularity
analysis [2] then leads to the estimate C3° ~ ¢;n with ¢; > 0 for the cost of the copy operator over
trees of size n. As for the cost GF C4(2), it writes as a rational functional in B(z) with the double
dominant pole 7, and we deduce an average asymptotic value of the form Cd ~ ¢,n?/2, ¢, > 0.

2. Regular rewriting systems

The matrix representation (1) for the cost GF’s can be generalised for all regular rewriting
systems [1].

THEOREM 1 (MATRIX REPRESENTATION FOR REGULAR REWRITING SYSTEMS). The cost GF’s of

operators fi,..., f, of a reqular system satisfy a system of the form
Cr(2) Cr(2) T (z)

(2) co | =METE)) | [+ |
Cr.(2) Cr.(2) m(2)

where the r; are the arities of the f;’s, and where the coefficient of the square matriz M(z,T(z))
are polynomials in z and T(z) with non negative coefficients.

Thus, the expression of each cost GF is

_detll(1d — M(2,7(2)))
(3) Crlz) = det(Id — M(z,T(z))) ’

where 1A denotes the matrix in which the i-th column of A has been substituted by the rightmost
vector of equation (2). We deduce, since z = T'(2)/¢(1'(2)), that Cy,(2) writes as

Cp(2) = 2D
Qi(T(2))
where P;(w) and @;(w) are polynomials. The average complexity of the operator f;, defined by
7 [10()
T (2)’

is determined by the relative position of p with respect to the smallest positive solution pg; of
Qi(T(po,i)) = 0 (see [1]).

THEOREM 2 (AVERAGE COST ESTIMATE). The average cost satisfies

(i) If Q:(T'(2)) does not vanish on (0, p], then cf = c(1+0(1/n));
(i) if p = pos, then CI* = can*?(1+ O(1/y/n));
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(i) if p > pos, then CI* = cs(p/pos) n®™*/2(1 + O(1/ /7)),
with ¢; > 0 and k, q positive integers.

In the case p = pg;, we have k = s+ 1 where s is the multiplicity of the factor (T'(z) — 7) in
Qi(T(2)).
3. Computation of the order of the average cost

It is possible to derive directly from the matrix M(z,7(z)) the order of the average cost of
the operators of a regular system. The substance relies on Frobenius theory of matrices with
nonnegative coefficients (see for instance [5]). The general technique proceeds as follows. First,
decompose M(z,T(z)) into diagonal blocks of irreducible matrices (Definition 1), then work on
each irreducible block.

3.1. Irreducible matrix case.

DEFINITION 1. A square matrix M is irreducible if there does not exist any permutation matrix
P such that P"'MP = (4 %) with A, B and C square matrices.

In other terms, an irreducible matrix is associated to a strongly connected graph. If the matrix
M (z,T(z)) is irreducible, the order of the average complexity of the operators are easily found.

THEOREM 3. Let {f;} be a set of operators of a regular rewriting system represented by an
irreducible matriz M(z,T(z)). Then all the py; are equal to the smallest positive root py of the
equation det(Id — M(z,T(z))) = 0 (take py = 400 if there is no positive solution). The relative
position of py with respect to p is determined from the dominant eigenvalue r(p,T) of M(p, 7). We
have

rip, 7)< Liff po>p,  r(pT)=1iff po=p,  71(p,7)> 1 iff po <p.

When r(p,7) = 1, or equivalently py = p, it is possible to get the exponent of n in the estimate
(ii) of Theorem 1. This is the polynomial case.

THEOREM 4. Let {f;} be a set of operators of a regular rewriting system represented by an
irreducible matriz M(z,1(z)). If the dominant eigenvalue of M(p,T) is 1, then the f;’s have an
average complexily which is linear or of order n®/?.

The case n®/2 occurs only in the degenerate case where M(z,T(z)) does not depend on T(z).

3.2. General case. In the general case, we start by finding a permutation matrix P such that
P~ M P writes as a block diagonal matrix, each block being of the form

Ay 0
B: s
Ay,

where each A; = A;(2,7(z)) is an irreducible square block. We also need the constraint that for
all 7 < j, the submatrix of B whose lines are those of A; and columns are those of A; is not zero.
Considering the graph represented by the matrix M, this task can be achieved thanks to Tarjan
algorithm on strongly connected components (see [3, pp. 441-448] for example).

Now, each block of the form B can be considered independently. Let C},(z) be a cost GF
associated to an irreducible square block A,. Expression (3) together with Theorem 3 show that
the position of pg ; is the smallest positive root of Hle det(Id— A;). Thus, if p; denotes the smallest
positive root of det(Id — A;), for each £, we need to compare p, with min;<;<,_1 p; in order to get
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the order of the average complexity of the operators f;. In fact, Theorem 3 asserts that this task
can be achieved by comparing only the dominant eigenvalues r;(p, 7) of the A;(p,T)’s.

In the polynomial case, the multiplicity of the factor (7'(z) — 7) in the denominator of the cost
GF is obtained by adding the multiplicities of this factor in the determinants det(Id — A;), yielding
the exponent of n in equation (ii) of theorem 2.

3.3. Examples.

Tree shuffle. We consider binary trees B = a + o(B, B) and operators f and g defined on 5% by

fla,a) = a f(o(u,v),a)— o(u,v) f(a,o(u,v))— g(u,v)
gla,a) — a g(o(u,v),a)— g(u,v) gla,o(u,v))— g(u,v)
Flolul, 1), o(u2,v2)) — of f(ul, u2), f(v1,02))
glo(ul,v1),o(u2,v2)) — o f(ul,u2), g(v1,v2))
The matrix representation of the shuffle is
_(22°T%(2) 227
M(2,T(z)) = <Z2T2(2‘) Z2T2(2‘) + 222) .
This matrix is irreducible. The eigenvalues of M(p,7) are 1 and 1/4, thus we are in the polynomial
case with a linear average complexity of the operators f and g.

Formal differentiation. The classical formal double differentiation on unary-binary trees 7 with
constructors *, exp and a variable has the matrix representation

z+22T(2) 0 0
M(z,T(z)) = ( 221(2)+ 2z  z+221(z) 0 )
2:T(2)+ 22 42T(2)+ 2z z+422T(z)

The diagonal coefficients of M(p, 7) are only 1’s, thus we are in the polynomial case with three blocks
of irreducible matrices on the diagonal, all giving a contribution to the order of the complexity.
Thus, the average complexity of the double differentiation operator is ¢n?. By induction on &, it
can be proved that the average cost of the k-th differentiation is of order n*/?+*,

Bibliography

[1] Choppy (Christine), Kaplan (Stéphane), and Soria (Michéle). — Complexity analysis of term rewriting
systems. Theoretical Computer Science, vol. 67, 1989, pp. 261-282.

[2] Flajolet (Philippe) and Odlyzko (Andrew M.). — Singularity analysis of generating functions. SIAM
Journal on Discrete Mathematics, vol. 3, n° 2, 1990, pp. 216-240.

[3] Froidevaux (Christine), Gaudel (Marie-Claude), and Soria (Micheéle). — Types de données et algorithmes. -
McGraw—Hill, Paris, 1990.

[4] Meir (A.) and Moon (J. W.). = On the altitude of nodes in random trees. Canadian Journal of Mathe-
matics, vol. 30, 1978, pp. 997-1015.

[5] Minc (Henryk). — Nonnegative matrices. — J. Wiley and sons, New York, 1988, Wiley interscience series
in discrete mathematics and optimization.

94



