Average Case Analysis of Tree Rewriting Systems

Cyril Chabaud
LITP
June 12, 1995

[summary by Xavier Gourdon]

Abstract
A general technique is presented to easily compute the order of the average complexity of a tree rewriting system from its matrix representation. It can be used for example to prove that the average cost of the k-th differentiation is of order \(n^{1+k/2} \).

1. Introduction

We aim at studying the order of the average complexity of regular tree rewriting systems. We deal with simple families of trees \(T \), in the sense of Meir and Moon [4]. The corresponding generating function (GF) is defined by \(T(z) = z\phi(T(z)) \) where \(\phi(y) \) is a polynomial whose \(n \)-th coefficient is the number of constructors of arity \(n \). For example, the GF of binary trees is defined by \(T(z) = z(1 + T^2(z)) = z\phi(T(z)) \) with \(\phi(y) = 1 + y^2 \).

Asymptotics of \(T(z) \). We define \(\tau > 0 \) as the solution of \(\tau\phi'(\tau) - \phi(\tau) = 0 \) and we denote \(\rho = \tau/\phi(\tau) = 1/\phi'(\tau) \). Then \(\rho \) is the dominant singularity of \(T(z) \) with the Puiseux expansion

\[
T(z) = \tau - \sqrt{\frac{2\phi(\tau)}{\phi'(\tau)}} \left(1 - \frac{z}{\rho}\right)^{1/2} + \sum_{n \geq 2} d_n \left(1 - \frac{z}{\rho}\right)^{n/2}.
\]

From singularity analysis, we deduce the estimate of the \(n \)-th coefficient of \(T(z) \)

\[
[z^n]T(z) = \sqrt{\frac{\phi(\tau)}{2\pi\phi'(\tau)}} \rho^{-n} n^{-3/2} \left(1 + O\left(\frac{1}{n}\right)\right).
\]

An example: differentiation of trees. A typical example of a tree rewriting system is formal differentiation. We describe the action of the differentiation and copy operators on trees constructed with a binary constructor \(\ast \) and a variable \(a \)

\[
d(a) \to a \\
d(u \ast v) \to d(u) \ast cp(v) + d(v) \ast cp(u) \\
\text{cp}(a) \to a \\
\text{cp}(u \ast v) \to \text{cp}(u) \ast \text{cp}(v)
\]

If \(B(z) \) denotes the GF of binary trees, this translates in terms of cost generating functions in the form

\[
C_d(z) = B(z) + 2zB(z)C_d(z) + 2zB(z)C_{cp}(z),
\]

\[
C_{cp}(z) = B(z) + 2zB(z)C_{cp}(z).
\]
Equivalently, we have the matrix representation

\[
\begin{pmatrix}
C_d(z) \\
C_{cp}(z)
\end{pmatrix}
= \begin{pmatrix}
2zB(z) & 2zB(z) \\
0 & 2zB(z)
\end{pmatrix}
\begin{pmatrix}
C_d(z) \\
C_{cp}(z)
\end{pmatrix}
+ \begin{pmatrix}
B(z) \\
0
\end{pmatrix}.
\]

The solution is

\[
C_d(z) = \frac{B(z)}{(1 - 2zB(z))^2} = \frac{B(z)(1 + B^2(z))}{(1 - B(z))^2(1 + B(z))^2}, \quad C_{cp}(z) = \frac{B(z)(1 + B^2(z))}{(1 - B(z))(1 + B(z))}.
\]

Since \(B(z) = z\phi(B(z)) \) with \(\phi(w) = 1 + w^2 \), \(\tau \) and \(\rho \) are easily determined: \(\tau = 1, \rho = 1/2 \).

Average complexity. The cost GF \(C_{cp}(z) \) writes as \(F(B(z)) \), where \(F(w) \) is a rational function. The dominant pole of \(F(w) \) is \(w = \tau \) and it is simple. An application of transfer lemma of singularity analysis [2] then leads to the estimate \(\tilde{C}_{cp}^n \sim c_1 n \) with \(c_1 > 0 \) for the cost of the copy operator over trees of size \(n \). As for the cost GF \(C_d(z) \), it writes as a rational functional in \(B(z) \) with the double dominant pole \(\tau \), and we deduce an average asymptotic value of the form \(\tilde{C}_d^2 \sim c_2 n^{3/2}, c_2 > 0 \).

2. Regular rewriting systems

The matrix representation (1) for the cost GF’s can be generalised for all regular rewriting systems [1].

Theorem 1 (Matrix representation for regular rewriting systems). The cost GF’s of operators \(f_1, \ldots, f_n \) of a regular system satisfy a system of the form

\[
\begin{pmatrix}
C_{f_1}(z) \\
\vdots \\
C_{f_n}(z)
\end{pmatrix}
= \begin{pmatrix}
M(z,T(z)) \\
\vdots \\
M(z,T(z))
\end{pmatrix}
\begin{pmatrix}
C_{f_1}(z) \\
\vdots \\
C_{f_n}(z)
\end{pmatrix}
+ \begin{pmatrix}
T^{\tau_1}(z) \\
\vdots \\
T^{\tau_n}(z)
\end{pmatrix},
\]

where the \(\tau_i \) are the arities of the \(f_i \)’s, and where the coefficient of the square matrix \(M(z,T(z)) \) are polynomials in \(z \) and \(T(z) \) with non negative coefficients.

Thus, the expression of each cost GF is

\[
C_{f_i}(z) = \frac{\det^{[i]}(\Id - M(z,T(z)))}{\det(\Id - M(z,T(z)))},
\]

where \([i]A\) denotes the matrix in which the \(i \)-th column of \(A \) has been substituted by the rightmost vector of equation (2). We deduce, since \(z = T(z)/\phi(T(z)) \), that \(C_{f_i}(z) \) writes as

\[
C_{f_i}(z) = \frac{P_i(T(z))}{Q_i(T(z))},
\]

where \(P_i(w) \) and \(Q_i(w) \) are polynomials. The average complexity of the operator \(f_i \), defined by

\[
\overline{C}_n^{f_i} = \frac{[z^n]C_{f_i}(z)}{[z^n]T^{\tau_i}(z)},
\]

is determined by the relative position of \(\rho \) with respect to the smallest positive solution \(\rho_{0,i} \) of \(Q_i(T(\rho_{0,i})) = 0 \) (see [1]).

Theorem 2 (Average cost estimate). The average cost satisfies

(i) If \(Q_i(T(z)) \) does not vanish on \((0, \rho]\), then \(\overline{C}_n^{f_i} = c_1(1 + O(1/n)) \);

(ii) if \(\rho = \rho_{0,i} \), then \(\overline{C}_n^{f_i} = c_2 n^{k/2}(1 + O(1/\sqrt{n})) \);
(iii) if $\rho > \rho_{0,i}$, then $C_{II} = c_3(\rho/\rho_{0,i})^n n^{r+1/2}(1 + O(1/\sqrt{n}))$, with $c_j > 0$ and k, q positive integers.

In the case $\rho = \rho_{0,i}$, we have $k = s + 1$ where s is the multiplicity of the factor $(T(z) - \tau)$ in $Q_i(T(z))$.

3. Computation of the order of the average cost

It is possible to derive directly from the matrix $M(z, T(z))$ the order of the average cost of the operators of a regular system. The substance relies on Frobenius theory of matrices with nonnegative coefficients (see for instance [5]). The general technique proceeds as follows. First, decompose $M(z, T(z))$ into diagonal blocks of irreducible matrices (Definition 1), then work on each irreducible block.

3.1. Irreducible matrix case.

Definition 1. A square matrix M is irreducible if there does not exist any permutation matrix P such that $P^{-1}MP = (A \quad 0 \quad 0)$ with A, B and C square matrices.

In other terms, an irreducible matrix is associated to a strongly connected graph. If the matrix $M(z, T(z))$ is irreducible, the order of the average complexity of the operators are easily found.

Theorem 3. Let $\{f_i\}$ be a set of operators of a regular rewriting system represented by an irreducible matrix $M(z, T(z))$. Then all the $\rho_{0,i}$ are equal to the smallest positive root ρ_0 of the equation $\det(\text{Id} - M(z, T(z))) = 0$ (take $\rho_0 = +\infty$ if there is no positive solution). The relative position of ρ_0 with respect to ρ is determined from the dominant eigenvalue $r(\rho, \tau)$ of $M(\rho, \tau)$. We have

$$r(\rho, \tau) < 1 \text{ iff } \rho_0 > \rho, \quad r(\rho, \tau) = 1 \text{ iff } \rho_0 = \rho, \quad r(\rho, \tau) > 1 \text{ iff } \rho_0 < \rho.$$

When $r(\rho, \tau) = 1$, or equivalently $\rho_0 = \rho$, it is possible to get the exponent of n in the estimate (ii) of Theorem 1. This is the polynomial case.

Theorem 4. Let $\{f_i\}$ be a set of operators of a regular rewriting system represented by an irreducible matrix $M(z, T(z))$. If the dominant eigenvalue of $M(\rho, \tau)$ is 1, then the f_i’s have an average complexity which is linear or of order $n^{3/2}$.

The case $n^{3/2}$ occurs only in the degenerate case where $M(z, T(z))$ does not depend on $T(z)$.

3.2. General case. In the general case, we start by finding a permutation matrix P such that $P^{-1}MP$ writes as a block diagonal matrix, each block being of the form

$$B = \begin{pmatrix}
A_1 & 0 \\
\vdots & \ddots \\
0 & \cdots & A_k
\end{pmatrix},$$

where each $A_i = A_i(z, T(z))$ is an irreducible square block. We also need the constraint that for all $i < j$, the submatrix of B whose lines are those of A_j and columns are those of A_i is not zero. Considering the graph represented by the matrix M, this task can be achieved thanks to Tarjan algorithm on strongly connected components (see [3, pp. 441–448] for example).

Now, each block of the form B can be considered independently. Let $C_{f_i}(z)$ be a cost GF associated to an irreducible square block A_i. Expression (3) together with Theorem 3 show that the position of $\rho_{0,i}$ is the smallest positive root of $\prod_{i=1}^k \det(\text{Id} - A_i)$. Thus, if ρ_{k} denotes the smallest positive root of $\det(\text{Id} - A_i)$, for each ℓ, we need to compare ρ_{k} with $\min_{1 \leq i \leq \ell-1} \rho_{i}$ in order to get
the order of the average complexity of the operators \(f_i \). In fact, Theorem 3 asserts that this task can be achieved by comparing only the dominant eigenvalues \(r_i(\rho, \tau) \) of the \(A_i(\rho, \tau)'s.\)

In the polynomial case, the multiplicity of the factor \((T(z) - \tau) \) in the denominator of the cost GF is obtained by adding the multiplicities of this factor in the determinants \(\det(\Id - A_i) \), yielding the exponent of \(n \) in equation (ii) of theorem 2.

3.3. Examples.

Tree shuffle. We consider binary trees \(B = a + o(B, B) \) and operators \(f \) and \(g \) defined on \(B^2 \) by

\[
\begin{align*}
 f(a, a) &\rightarrow a & f(o(u, v), a) &\rightarrow o(u, v) & f(a, o(u, v)) &\rightarrow g(u, v) \\
 g(a, a) &\rightarrow a & g(o(u, v), a) &\rightarrow o(u, v) & g(a, o(u, v)) &\rightarrow g(u, v)
\end{align*}
\]

\[
\begin{align*}
 f(o(u_1, v_1), o(u_2, v_2)) &\rightarrow o(f(u_1, u_2), f(v_1, v_2)) \\
 g(o(u_1, v_1), o(u_2, v_2)) &\rightarrow o(f(u_1, u_2), g(v_1, v_2))
\end{align*}
\]

The matrix representation of the shuffle is

\[
M(z, T(z)) = \begin{pmatrix}
2z^2T^2(z) & 2z^2 \\
2z^2T^2(z) & z^2T^2(z) + 2z^2
\end{pmatrix}.
\]

This matrix is irreducible. The eigenvalues of \(M(\rho, \tau) \) are 1 and 1/4, thus we are in the polynomial case with a linear average complexity of the operators \(f \) and \(g \).

Formal differentiation. The classical formal double differentiation on unary-binary trees \(T \) with constructors \(*\), \(\exp \) and a variable has the matrix representation

\[
M(z, T(z)) = \begin{pmatrix}
z + 2zT(z) & 0 & 0 \\
2zT(z) + z & z + 2zT(z) & 0 \\
2zT(z) + 2z & 4zT(z) + 2z & z + 2zT(z)
\end{pmatrix}.
\]

The diagonal coefficients of \(M(\rho, \tau) \) are only 1’s, thus we are in the polynomial case with three blocks of irreducible matrices on the diagonal, all giving a contribution to the order of the complexity. Thus, the average complexity of the double differentiation operator is \(cn^2 \). By induction on \(k \), it can be proved that the average cost of the \(k \)-th differentiation is of order \(n^{k/2+1} \).

Bibliography

94