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Abstract

Most decisions in geometric algorithms are based on signs of determinants. For example,
deciding if a point belongs to a given half-space or a given ball reduces to evaluating the sign
of a determinant. It is therefore crucial to have reliable answers to such tests and to produce
robust algorithms. There exist basically two categories of approaches to this objective:

— rounded computations, followed by a proof of the topological correctness of the result;

— exact integer computations that use nf bits for the computation of an n x n determi-

nant with ¢-bit integers as inputs.

Here, the second approach is followed, the goal being to use as few bits as possible to evaluate
signs of determinants. For dimensions n = 2 and n = 3, the algorithms proposed require
respectively ¢ and £ + 1 bits arithmetic, and run in polynomial time in £: they perform in
the worst case respectively O(¢) and O(£3) elementary operations —additions, subtractions,
comparisons, and Euclidean divisions— on integers of £ or £+ 1 bits. Extensive simulations
have shown that the algorithms perform well in practice so that the average-case complexity
appears to be much better than the worst-case complexity. This observation can be proved
in the two-dimensional case [6]. Under heuristic hypotheses, the proof can be extended to
the three-dimensional case [5].

This talk is based on a joint paper of Francis Avnaim, Jean-Daniel Boissonnat, Olivier Devillers,
Franco P. Preparata, and Mariette Yvinec [1]. The author of the summary has interpreted some
ideas of the original lecture and has proven a conjecture stated there [5, 6].

1. Two-dimensional case.

The aim is to evaluate the sign of a 2 X 2 nontrivial determinant,
D = det ($1 yl) ,
T2 Y2

with nonzero integer entries of at most £ bits. By dividing the first column by z; and the second
column by ¥, one can write D = z,y, D’ with

D’:det<1 ;):y—x,

x

where y = y,/y; and © = x5/x;. Evaluating the sign of a 2 x 2 determinant thus reduces to
evaluating the sign of the difference between two rationals z and y. We consider the set J, of
rationals in the interval ]0,1/2] whose numerator and denominator have at most £ bits.
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The main idea is to expand both rationals z and y into continued fractions: the comparison
between both expansions (under lexicographic order) suffices to compare the rationals themselves.
The outline of the algorithm is thus very simple:

Aslong as z and y have matching continued fractions expansions, continue expand-
ing; stop as soon as the expansions differ.

There are two variants of the algorithm, which depend on the kind of continued fraction that
is used: The Standard-Sign algorithm is based on standard continued fractions that are built with
the usual Euclidean division a = bq + r with 0 < r < b while the Centered-Sign algorithm is based
on centered continued fractions that are built with the centered Euclidean division a = bg + r with
|r| < b/2. The worst-case of these algorithms arises when z and y are equal and the analysis uses
well-known results of Lamé (1845) [4] and Dupré (1846) [3] relative to the standard and centered ged
algorithm respectively. The average number of iterations is quite different from the worst case since
it is asymptotically constant (i.e., independent of the number £ of bits of the input) [6]. Not too
surprisingly similar constants show up in the average-case analysis of lattice reduction algorithms
in the two-dimensional case [2].

THEOREM 1. On rationals z and y of J,, the algorithms perform a number of ilerations L at
most

log(1+\/2) ?

(los2 for the Standard-Sign algorithm.

{KJ—IO 2. for the Centered-Sign algorithm,
log ¢’

(Here, ¢ is the golden ratio equal to ¢ = (1 ++/5)/2). If the entries x and y are taken in the
square Jy x J, with a density F(x,y) proportional to |x — y|” (with r > —1), the average number
of iterations E[L] of the Centered-Sign algorithm is asymptotic to

,_
—

2
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r { — o0,
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and the average number of iterations E[L] of the Standard-Sign algorithm is asymptotic to

4 =1 1
a(r) = C(4 _I_ 27,) E d2+r Z C2+r7 K — 0.

d=1 d<c<2d

In particular, when the density F is uniform, the average numbers of iterations are respectively
asymptotic to

d¢?

B:=p(0) = idi > %:1.08922...,
=[d

,_
—

SIS

o= a(0) = 7p i > %:1.20226....

d=1 %" g<e<nq ©

In Fig. 1, the domains [L = k] relative to the Standard-Sign algorithm are represented alterna-
tively in black (for odd values of k) and white (for even values of k).
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F1Gurg 1. The domains [L = k] relative to the Standard-Sign algorithm.

2. Three-dimensional case.

Let D denote a 3 x 3 determinant with Vi, V5, V3 as row vectors. The components z;,y;, z; of
vector V; are assumed to be f-bit integers. The vertical components of the input vectors play a
special role in the algorithm: all the projections performed are projections parallel to E, where F,
denotes the last vector of the canonical basis of R3. Using properties of the determinant, one can
assume without loss of generality that the vertical components z; are positive and in increasing
order.

The sign of D depends on which side vector Vj lies with respect to the plane P := (V}, V) and
this sign is more difficult to evaluate if vector V3 is very “close” to plane P. We thus define a
neighbourhood V of the plane P that satisfies the following two properties:

(a) If V3 does not belong to V, then it is easy to determine on which side vector Vj lies with
respect to the plane P, the problem reducing to evaluating the sign of a 2 X 2 determinant;
(b) If V5 belongs to V, then there exists a vector W3 obtained by translating V3 parallely to P
whose last component zj satisfies |2}| < z3/2; the algorithm then continues with the new
vector system (Vi, V,, Ws).

The vector V3 decomposes as Va = A Vi + A\ Vy 4+ pFE,, with rational components Ay, Ay, p. The
numerators and denominators of these rationals may have 2¢ bits, so that we cannot directly operate

with them. The determinant D satisfies

D :=det(Vy, V,, V3) = pdet(Vy, Vs, E,) = pdet(vy, vq),

where v; is the projection of V; on the horizontal plane z = 0. If we evaluate the sign of the
rational p —without explicitly computing it— the problem reduces to evaluating the sign of the
determinant det(v;, v,), which is of order 2.

Let R be the lattice generated by the vectors V; and V5. The fundamental centered parallelogram
F of lattice R is defined as the set F := {V = 1 Vi + poVo; ;| < 1/2}. The parallelogram F
divides into four sub-parallelograms F; that correspond to the four quadrants determined by the
four possible signs of (pq, ft2).

Let V be the vector of lattice R for which Vi3 — V' is projected inside the fundamental centered

27



FicurEe 2. The sub-box B5;.

parallelogram F. The integer vector V' decomposes as V := |A;]V] 4+ |A2| V> where |A] denotes the
integer nearest to rational A. The integer vector V3 := V3 — V is Vi = p, Vi + poVo + pE.. Here,
the components p; are rationals with absolute value less than 1/2 and the integer 2z denotes the
vertical component of V3. The vector p; V] + po V5 is thus a vector of plane P with rational vertical
component 2’ := py2z; + pazs. Since p = 25 — ', the sign of p is easy to evaluate provided that we
can evaluate the sign of the difference between the integer 25 and the rational z’. This is the case
when the vector V; does not belong to the box B which is defined as follows: The elementary box
B is the union of the four sub-boxes B;; the sub-box B; is a cylinder of direction F,, of basis F;,
which is delimited by two horizontal planes, whose equations are:

z=0 and z=(z+29)/2, fori=1;
z=—2z/2 and z= z/2, for i = 2;
z=—(z1+42)/2 and 2z=0, for ¢ = 3;
z=—29/2 and z=z/2, for ¢ = 4.

Thus, each sub-box has an height equal to (2, 4+ 2z3)/2; the sub-box B; is represented in Fig 2.
The neighborood V of plane P is defined as the union of all boxes of the lattice /R obtained by
translation of B by a vector of lattice R.

If the vector V5 belongs to the neighbourhood V), the vector V; belongs to the box B and different
cases are to be considered:

— If the vector Vj is projected inside F; for ¢ = 2 or ¢ = 4, we let W3 := VJ; the absolute value
of the last component zj of vector W3 is less than z,/2, and the other components of vector
W3 have always at most £ bits; the algorithm continues with the system (Vi, Vs, W3).

— If the vector V3 is projected inside F; for ¢ = 1 or ¢ = 3, two sub-cases are to be considered:
lp1| < |p2| and |p1| > |p2|. The vector W3 is then defined as follows: Wj is the vector among
the two vectors Vy or V, — VJ whose last component has the smaller modulus (in the first
case). Wj is the vector among the two vectors V3 or V; — V; whose last component has the
smaller modulus (in the second case). In both cases, the last component of vector Wj is
in absolute value less than z,/2 and its other components have always at most ¢ bits; the
algorithm continues with the system (Vi, Vs, W3).

We give now the precise description of the algorithm.

28



Preliminary step. Order the vectors Vi, V5, V3 and, if necessary, change some of them
into their opposite, in such a way that the vertical components (zy, 24, z3) are positive
and sorted in increasing order.
While 2, # 0 do
1. Compute the vector V of lattice R. Let Vy := V3 - V.
2. If V3 does not belong to box B
then evaluate the sign of det(v;, v;) and exit;
else compute the vector W3; V3 := W3, Order the vectors Vi, V,, V3 and,
if necessary, change them into their opposite so that their vertical
components are positive and in increasing order.

At each iteration, either the algorithm evaluates the sign of p (if the test in step 2 is positive)
and then terminates by the evaluation of a 2 X 2 determinant, or it continues iteratively on a 3 x 3
determinant where the largest of the last components has been divided by at least two, the other
components remaining unchanged. Thus, the number of iterations of the algorithm is at most equal
to 3.

At each iteration, one computes the nearest integers to rational numbers A; and A,

det <$3 ’ys) det ($1 yl)
Ty Yo T3 Ys
R RPN
det < 1 ?J1) det ( 1 yl)
Ty Yo Ty Yo
These rational numbers are quotients of two determinants of order 2 having ¢-bit integer entries,

and cannot be computed directly in single precision. The nearest integers |A;] are evaluated, bit
by bit by means of a dichotomic process that uses the signs of determinants

det (xg —kay ys - kyl) or  det <x3 —kay s - kyz) .k =1,2,4,...,2",

T2 Ya Z Y1

Alz

with entries of at most £ 4+ 1 bits. Thus, the computation of vector V uses at most 4¢ evaluations
of signs of 2 X 2 determinants with entries of at most £ 4+ 1 bits.

THEOREM 2. Let D be a 3 X3 determinant with £-bil integer entries. The determinant sign algo-
rithm above performs at most 3( iterations in the worsl-case, each iteration involving the evaluation
of at most 40 + 9 signs of determinants 2 X 2 with £ + 1-bil integer entries. In the worst-case, the
algorithm requires 3(*(40+9) elementary steps, each of them involving O(1) additions, comparisons
and Fuclidean divisions on £ + 1-bil integers.

Note that extensive experiments show that the average number of iterations is around one. One
may give a heuristic explanation to this phenomena [5]. Note also that the algorithm can be
generalized to higher dimensions [5].
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